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ABSTRACT 
 
Transport processes in clays are difficult to quantify but are a key-point for deducing the properties of these 
materials for waste containment. To improve the situation, version 2.13 of PHREEQC was extended with 
multicomponent diffusion and anion exclusion in a diffuse double layer. With it, both laboratory and in-situ 
diffusion experiments can be modeled in a comprehensive manner. Application examples are discussed, and 
an experiment in Opalinus Clay in Mont Terri (investigated in the framework of possible storage of nuclear 
waste in Switzerland) is presented. 
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1. INTRODUCTION 
 

Clays have rather ideal properties for waste containment in the field, but the transport processes are 
still difficult to quantify precisely. The dominant transport mode is diffusive and different porewater 
diffusion coefficients have been measured for various solutes. However, almost all the models 
calculate transport in clays assuming that one and the same diffusion coefficient applies for all the 
solutes. Precipitation reactions are usually calculated assuming equilibrium, but this gives wrong 
results that would have been noted immediately if the model discretization had been changed. Finally, 
the transport properties of clays are dependent on the extent of the double layer that envelops the clay 
minerals, but again, this well-accepted feature is not yet accounted for in geochemical transport 
models. 
 

Version 2.13 of the hydrogeochemical transport model PHREEQC (Parkhurst and Appelo, 1999) 
has been extended with a multicomponent diffusion module that may offer some improvement 
(Appelo and Wersin, 2007). The impetus was provided by detailed diffusion experiments in Opalinus 
Clay with various tracers (Wersin et al., 2004). The basic theory for calculating multicomponent 
diffusion with a zero charge flux is presented, and various application examples are given. 
 
 
2. MULTICOMPONENT DIFFUSION 
 

Fick’s laws calculate diffusion from concentration gradients and divergences. However, a more 
general equation would employ the electrochemical potential µ, rather than the concentration. The 
electrochemical potential is: 
 

µ = µ0 + RT ln a + zFψ                                                                 (1) 
 

where µ0 is the standard potential (J/mol), R is the gas constant (8.314 J/K/mol), T is the absolute 
temperature (K), a is the activity (-), z is the charge number (-), F is the Faraday constant (96485 
J/V/eq), and ψ is the potential (V). The activity is related to concentration by a = γ c/c0, where γ is the 
activity coefficient (-) and c0 is the standard state (1 mol/kg H2O, assumed equal to 1 mol/L in the 
following). 
 

The diffusive flux of species i in solution as a result of chemical and electrical potential gradients 
is: 
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where Ji  is the flux of species i (mol/m2/s), and ui is the mobility in water (m2/s/V). The mobility is 

related to the tracer diffusion coefficient Dw, i (m2/s) by: 
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The gradient of the electrical potential (∂ψ/∂x) in Equation (2) originates from different transport 

velocities of ions, which creates charge and an associated potential. This electrical potential may differ 
from the one used in Equation (1), which comes from a charged surface and is fixed, without inducing 
electrical current. 
 

If there is no electrical current, Σ zii Jii = 0. This zero-charge flux condition permits to express the 
electrical potential gradient as a function of the other terms in Equation (2) and to obtain (Vinograd 
and McBain, 1941; Ben-Yaakov, 1972, Cussler, 1984): 
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where subscript j is introduced to show that these species stem from the potential term. 

 
Equation (4) looks formidable, but inspecting it piecewise will show that the terms involved are 

known: they consist of charge numbers and diffusion coefficients (which can be constants at a given 
time and place), and concentrations and activity coefficients (which are given by the space 
discretization of the model). Thus, the flux of any solute species can be calculated at any time, 
iteration (for maintaining electrical neutrality) is not necessary. The equation is valid even if the 
solution is not electrically neutral since any charge imbalance that may exist (notably in the diffuse 
double layer) is maintained by the zero-charge flux condition. The zero-charge and electroneutrality 
conditions have led to discussions in the geochemical literature that ended up pointless (Boudreau et 
al., 2004). 
 
2.1. An example: uphill diffusion (after Lichtner, 1995) 
 

We fill a tube with 0.1 mM NaCl and 0.1 mM HNO3 solution, the pH is 4. We make another 
solution with the same NaCl concentration, but with 0.001 mM HNO3, the pH is 6. This is the 
boundary solution with constant concentrations over time, shown in Figure 1. The figures are copies of 
the charts from PHREEQC for Windows, transformed into grayscale, and clearer by coloring when 
run on the computer; input-files are available on request to the author, appt@xs4all.nl. 
 

Obviously, H+ and NO3
- are going to diffuse from the column. On the other hand, the concentration 

gradients of Na+ and Cl- are zero (dc/dx = 0), and their concentrations remain constant according to 
Fick’s law. The concentration pattern that results after 1 hour diffusion according to Fick is shown in 
Figure 2. 
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Figure 1. Initial conditions in a column example of 
multicomponent diffusion. The NaCl concentration is the same 
in the boundary solution and in the column; the concentration of 
HNO3 in the column is the same as NaCl (pH = 4, symbols 
overlap), but 100 times lower in the boundary solution (pH = 
6). 
 

Figure 2. Concentrations in the column after 1 hour 
diffusion calculated according to classical diffusion 
(Fick) theory. Note that the concentrations of H+ and 
NO3

- decrease by diffusion, while Na+ and Cl- remain 
constant. 

However, the diffusion coefficient of H+ is about 5 times higher than of NO3
-, and we can expect 

that H+ diffuses quicker from the column. The effect can be modeled with PHREEQC’s 
multicomponent diffusion module, in which all the solutes diffuse according to their own diffusion 
coefficient. The resulting concentration pattern in Figure 3 shows indeed that more H+ has diffused out 
of the column than in the previous case. Remarkable in Figure 3 is also, that the Na+ concentration 
bulges upward, although the initial concentration gradient was zero everywhere. On the other hand, 
the Cl- concentration has decreased, despite the initially zero concentration gradient which, according 
to Fick’s first law, gives a zero flux. 

 
Figure 3. Concentrations in the column after 1 hour diffusion calculated with multicomponent diffusion theory. 
 

These results can be explained as follows. After some time, the column contains more NO3
- than 

H+. Na+ that enters the column, and Cl- which leaves the column balance the resulting negative charge. 
The diffusion of Na+ and Cl- starts although the initial concentration gradient is zero, and continues 
even against the concentration gradient that develops. This is a consequence of the zero charge flux 
condition that is used to calculate multicomponent diffusion. It is of interest to note that the final stage 
in the column, when all the concentrations are equal to the ones in the boundary solution, is reached 
quicker with multicomponent diffusion. 
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3. PRECIPITATION REACTIONS IN DIFFUSION CALCULATIONS. EFFECTS OF GRID-SIZE 
 

Numerical models must be checked, if possible, by comparing with an analytical solution. Another, 
easier test is to change the gridsize and timestep. But, it has not been well appreciated that the grid size 
affects the results of diffusion calculations if equilibrium is assumed with solid phases. To understand 
what is going on, let’s model an experiment of Pina et al. (2000), who precipitated scheelite (CaWO4) 
in a column by letting CaCl2 and Na2WO4 solutions diffuse from the column ends over 30 days 
(Figure 4). 

 
Figure 4. The setup of the diffusion experiment of Pina et al. (2000) in which scheelite precipitates by diffusion of Ca2+ and 
WO4

2- from the two column-ends. 
 

First, the calculation is done with classical diffusion theory, i.e. all the solutes diffuse at the same 
speed and scheelite precipitates to equilibrium where supersaturation is reached, which happens 
almost exclusively in the center-cell (Figure 5). With 10 mm cells, 0.09 L scheelite precipitates per L 
pore water; with 3.33 mm cells, the amount increases to 0.27 L, and so on. The relative amount of 
scheelite in the center-cell increases continuously when the grid is further refined. If the cell-size is 
decreased to 1 mm, the amount of scheelite will exceed the pore volume, which is of course 
impossible. 

 
Figure 5. Precipitation of scheelite to equilibrium in a diffusion experiment calculated with 10 mm and 3.33 mm grid cells 
and the same diffusion coefficient for all solutes. Precipitation takes place in the center cell, irrespective of the grid size, and 
relative amounts increase indefinitely as the grid is refined. 

 
The situation improves if the calculation is done with a kinetic precipitation rate that is sufficiently 

slow to let the solutes pass the center cell and precipitate further away. The results then become 
independent of grid refinement, as illustrated in Figure 6. 
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Figure 6. Precipitation of scheelite becomes independent of grid size if a kinetic rate is used that allows solutes to pass the 
center cell. 
 

Kinetics is required in the model anyhow, since scheelite did not precipitate to equilibrium in the 
experiment. Pina et al. (2000) observed that precipitation occurred only when the solute ratios of Ca2+ 
and WO4

2- were within certain limits. Apparently, a high supersaturation, as result of a high 
concentration of only one component, is insufficient to engender precipitation if the concentration of 
another component that is needed in the precipitate is too small. Pina et al. also found that the zone 
with scheelite was displaced away from the center towards the column end where the Na2WO4 
solution entered. Similar features were noted already for other minerals by Prieto et al. (1990, 1997). 
 

A kinetic rate was defined in the PHREEQC input file that started the homogeneous precipitation 
of scheelite when the saturation ratio attained 104 (Pina et al.), and when the activity ratio [Ca2+] / 
[WO4

2-] ranged from 0.1 to 10. The latter requirement gives a block-like precipitation zone without the 
tailing that is visible in Figure 6. The off-center displacement of the precipitation zone was modeled 
with multicomponent diffusion, adjusting the tracer diffusion coefficient of WO4

2- to 2.5×10-10 m2/s, or 
about 3 times smaller than of Ca2+. The results in Figure 7 agree pretty well with Pina’s experiment. It 
can be noted in passing, that the diffusion coefficients in PHREEQC are adjusted as a function of the 
porosity, and that the porosity is adapted according to the volume of scheelite that precipitates. 

 
Figure 7. Modeling Pina et al.’s experiment with kinetic precipitation of scheelite and multicomponent diffusion. The 
diffusion coefficient of WO4

2- is lower than of Ca2+, which shifts the precipitation zone towards the column end where WO4
2- 

enters. The curves are for 2 discretizations. 
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4. DIFFUSE DOUBLE LAYER EFFECTS ON DIFFUSION IN CLAYS 
 

So far, the tracer diffusion coefficients found in plain water were used in the calculations, but 
abundant evidence shows that the diffusion coefficients of cations, anions and neutral species in 
porewater in clays have different values, and that the mutual ratios of the coefficients are dissimilar as 
well. Also, the accessible porosity varies and depends on the ion’s charge number. It is attributed to 
the diffuse double layer (DDL) around the negatively charged clay, where the concentrations of anions 
are reduced and of cations increased. If part of the pore space is inaccessible for anions, diffusion is 
diminished; if the cations are at a higher concentration, their diffusion is enhanced since diffusion 
fluxes are coupled to concentrations as illustrated in Figure 8. 
 

 
Figure 8. A pictorial simplification of solute diffusion in a (partly) charged pore connected with a free solution. Anions are 
excluded from the diffuse double layer at the negatively charged surface, cations are enriched there, and consequently, their 
diffusion is enhanced. 
 

The DDL can be explicitly considered in PHREEQC’s multicomponent diffusion calculations 
(Appelo and Wersin, 2007). The calculation scheme follows a discretization of Figure 8, shown in 
Figure 9. The pore is discretized along its length in paired cells. One cell of each pair contains a free 
solution that is charge-balanced; the other holds a charged surface together with the DDL. The solutes 
in the DDL are calculated with Boltzmann’s formula, using the activities in the free porewater solution 
and a potential that is optimized to give zero charge of the cell (the Donnan approximation). The 
paired cells are aligned along the pore, and multicomponent diffusive transport is calculated by 
explicit finite differences for each interface among the pairs of cells. 
 

 Double Layer
 (c i ,   µi ,  ψ)DL

free solution
 c i ,   µi ,  ψ = 0

 
Figure 9. Discretization of a pore with a charge-free solution and a diffuse double layer that forms the basis for the 
multicomponent diffusion model in PHREEQC. 
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4.1. An example: diffusion of LiBr 
 

An an example, let’s calculate the diffusion of LiBr in a diffusion cell as has been used, among 
others, by Sato et al. (1992). The two halves of the cell are filled with a porous medium, a cocktail 
with various tracers is distributed on the surface of one, and the two halves are clamped together. After 
some time, the cell is opened, sliced in parts and analyzed. Depending on the characteristics of the 
porous medium, and for a sample with a low cation exchange capacity (low clay content) the results 
may vary as illustrated in Figure 10. 
 

 
Figure 10. Diffusion of LiBr-tracer from the center of a 5 mm long diffusion cell in 30 minutes. Shown are the sum of solute 
and exchangeable concentrations expressed per L porewater. The calculated results are for a porous medium without cation 
exchange (only_PW) or with an exchange capacity of 1 mM X-, in which the cations are either immobile on the exchanger 
(PW + 1 mM X) or mobile in the DDL (PW + 1 mM DDL). The porewater contains 1 mM NaCl as background electrolyte. 
 

The diffusion coefficient of Br- is twice higher than of Li+, which shows up in a larger spread of Br- 
if the retardation is 1 for both ions (i.e. if the porous medium lacks exchange capacity, Figure 10, 
curves labeled as only_PW). If the medium is given an exchange capacity of 1 mM X-, the diffusion of 
Li+ is retarded by cation exchange with Na+, and the spread of Li+ is further diminished (curve labeled 
as PW + 1 mM X). If the exchangeable cations reside in a DDL that occupies half of the pore space 
and can diffuse there, the spread is increased again (curve labeled as PW + 1 mM DDL). Diffusion is 
enhanced still further when the option is invoked that the DDL is filled with counter ions only. 
 

The Br- concentration pattern is hardly affected by introducing cation exchange, because in this 
example it concerns a given amount of chemical that has been introduced in the clay. However, 
diffusion of anions is notably diminished if they are coming from an outer, boundary solution and a 
significant part of the pore space is occupied by the DDL and thus inaccessible for anions. 
 
 
5. DIFFUSION EXPERIMENTS IN OPALINUS CLAY 
 

The Opalinus Clay, a clay-rock formation in Switzerland, is investigated for possible storage of 
nuclear waste, and its diffusion characteristics are probed in detailed experiments. In the in-situ 
experiments, a solution with the general composition of the formation’s porewater, supplemented with 
various tracers, is recirculated in a borehole (Wersin et al., 2004). The tracers diffuse radially outward 
into the formation, and the concentration changes in the borehole fluid are followed in time. 
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The borehole of the experiment to be discussed is inclined with respect to the bedding planes, 
which causes the spreading pattern to become elliptical. Accordingly, an elliptical grid is to be 
constructed for modeling the concentration changes with finite differences. In the following, the 
formulas to be used will be explained for a cylindrical grid since analytical solutions can be derived 
for that case. Next, the experimental concentrations are compared with the results of computations 
with the elliptical grid. 
 
 
5.1. Finite differences for diffusion in polar coordinates 
 

We want to solve Fick’s equation in polar coordinates (r, θ): 
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where c is concentration (mol/L), t is time (s), De  is effective diffusion coefficient (m2/s), r is 

radial distance (m), θ  is the angle (degrees). For the radially symmetric situation, 2
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writing the time derivative in forward difference and the spatial derivatives in central differences 
gives: 
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The central difference equation with constant ∆r is, in principle, 2nd order accurate, meaning that a 

grid-refinement by a factor of 2 should result in a solution that is 4 times more accurate. However, 
problems often appear at boundary cells where concentrations change abruptly, and the error there 
may propagate into the rest of the model in a complicated manner. It is shown by Appelo and Postma 
(2005, p. 545) that weighting the constant concentration twice in the difference equation correctly 
solves the constant concentration boundary condition. 
 

The PHREEQC-2 manual (Parkhurst and Appelo, 1999) gives a more general equation for solving 
diffusion among cells of any form in the stagnant zones of a dual porosity medium that can be 
modeled by PHREEQC-2: 
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where Aij is the shared surface area among cells i and j (m2), hij is the distance between midpoints 

of the cells (m), Vi is the volume of cell i (m3), and fbc is a correction factor for boundary cells. 
Equation (7) can be derived, writing out Fick’s first law for cell i and solving the mass balance (cf. 
Appelo and Postma, 2005, p. 87). 
 

If the cells are built in concentric layers with equal spacing hij = ∆r, then 
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Substituting Equation (8) in (7), taking  fbc = 2 if j is a constant concentration cell and 1 otherwise, 
and further writing out, also produces Equation (6). Thus, radial diffusion can be modeled with 
PHREEQC-2 with 2nd order accuracy, using option ‘–stagnant’ of keyword TRANSPORT. A series of 
mixing factors must be defined with keyword MIX as explained in the PHREEQC-2 manual (p. 52, 
251-253). In the terms of the finite difference formula (6), the mixing factors are: 
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and Equation (6) becomes: 
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Equation (10) shows that 2t

ic  becomes negative if 1t
ic > 0, 1

1
t
ic ± = 0, and (mixfi+1 + mixfi-1) > 1. 

Accordingly, the timestep ∆t must be constrained to the maximum that keeps (mixfi+1 + mixfi-1) < 1 in 
the grid, and (mixfi+1 + 2 mixfi-1) < 1 in any of the cells in contact with a constant concentration. This 
timestep condition also prevents numerical oscillations in most situations (Appelo and Postma show 
that (mixfi+1 + 2 mixfi-1) < 2/3 will always prevent oscillations). 
 

Similar to the radial grid, mixing factors can be calculated for the elliptical grid needed for 
modeling Wersin et al.’s experiment. 
 
 
5.2. Modeling tritium, iodide and sodium from the experimental data 
 

The porewater diffusion coefficient is the parameter to be fitted on the concentration data from the 
diffusion experiment. The porewater diffusion coefficient is related to the effective diffusion 
coefficient used above in Fick’s law (Equation 5) and to the solute’s tracer diffusion coefficient in 
‘free’ water by, 
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where De, i is the effective diffusion coefficient for solute i (m2/s), εa, i is the accessible porosity (-), 

Ri is the retardation (-), Dp, i is the porewater diffusion coefficient (m2/s), Dw, i is the tracer diffusion 
coefficient in water (m2/s), and θi is the tortuosity (-). The retardation is, in principle, calculated by the 
geochemical model; for 22Na+ it is defined by the cation exchange capacity and the porewater 
composition of the Opalinus Clay, tritium and iodide are not retarded (R = 1). The accessible porosity 
is the water-filled porosity for tritium and Na+ (εa = 0.16), and half of that for iodide. (The accessible 
porosity is found by comparing porewater concentrations with concentrations in the ‘free’ solution that 
contacts the clay, or by combining the transient and steady states in a laboratory diffusion experiment 
(Van Loon et al., 2004)). 
 

The tracer diffusion coefficients are known, mainly from measured electrical conductivities 
(Robinson and Stokes, 1959). The smaller accessible porosity for iodide is incorporated in the model 
by defining half of the porewater to be DDL water. Thus, the tortuosity is the only remaining 
parameter that is ‘free’ to be fitted. Computed and measured concentrations in the borehole fluid are 
compared in Figure 11, using the tortuosity that is optimized for tritium (full line for tritium, dotted 
lines for iodide and sodium), or optimized tortuosities for iodide and sodium (full lines) (Appelo and 
Wersin, 2007). 
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Figure 11. Observed iodide, tritium and sodium in the borehole fluid during an in-situ diffusion experiment in Opalinus Clay 
(symbols) and model calculated concentrations (lines) in Mont Terri experiment. The dotted lines stem from a model in 
which tritium, iodide and sodium have the same tortuosity. The full line for iodide results when the tortuosity is increased by 
1.2. The full line for 22Na is obtained with a 1.5 times smaller tortuosity than of tritium (Appelo and Wersin, 2007). 
 
 

The tortuosity of iodide is higher than of tritium. It can be explained by the heterogeneous 
distribution of clay minerals which creates a spatially variable diffuse double layer that blocks 
transport of the anions in pore constrictions where cations and tritium can continue to diffuse. The 
tortuosity of 22Na+ is smaller than of tritium. This is more difficult to explain, and may be a result of 
diffusion through the interlayer space of swelling clay minerals, or perhaps of surface diffusion of 
exchangeable cations. 

 
6. CONCLUSIONS 
 

Version 2.13 of the PHREEQC hydrogeochemical code was extended with multicomponent 
diffusion and diffuse double layer diffusion for comprehensive modeling of transport in clays. The 
code can handle laboratory and in-situ diffusion experiments in a way not possible hitherto. Examples 
of multicomponent diffusion were discussed, showing 1) uphill diffusion as a result of different 
diffusion speeds of individual ions, a process that cannot be explained by Fickian diffusion, 2) 
precipitation reactions that can only be modeled correctly with kinetic rates, 3) precipitation of 
scheelite in a laboratory diffusion experiment, and 4) an in-situ diffusion experiment in Opalinus Clay 
where diffusion data of tritium, 22Na+ and I- were modeled altogether in an elliptical grid. 
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