Chapter 4
MULTICOMPONENT ION EXCHANGE AND CHROMATOGRAPHY IN NATURAL SYSTEMS
C. A. J. Appelo
Faculty of Earth Sciences, Free University
De Boelelaan 1085
1081 HV Amsterdam, The Netherlands

INTRODUCTION

Ritchie (1966) noted that it was a geologic setting that first evoked the need for a chromatographic explanation. He was referring to experiments by soil chemists who in the middle of the 19th century measured the exchange of NH\textsubscript{4}\textsuperscript{+} versus Ca\textsuperscript{2+} in soil samples. Ritchie then continued to lament that geologists are reluctant to accept the concepts of chromatography, and he invited chromatographers to apply their expertise to geological problems. Multicomponent ion exchange was indeed not given much attention in geochemistry, and soil chemistry textbooks that explain how to calculate multicomponent exchange equilibria are still rare.

There is, on the other hand, not one soil scientist who will deny the importance of ion exchange in regulating soil solution compositions. It is not relevant to apply chromatographic theory in soil science, but rather the feeling that processes are more complicated than can be solved by the relatively simple solutions of chromatographers. Hydrogeochemists face even greater problems than soil scientists, as they have fewer sampling points, less analyses of the solid material, and have not much knowledge of the flowpath and residence time of their water sample in the subsurface. The lack of material information has probably stimulated even more the search for concepts which can explain the observed response of the subsurface to water quality changes during artificial recharge. The foremost chemical process in these transient systems is multicomponent chromatography.

Multicomponent ion exchange is the basis of chromatography. It involves the competition of all the ions in pore water for the soil exchanger(s). Because natural exchangers show different selectivity for different cations, the rate of sorbed over solute concentration is variable for individual cations. This implies that retardation (or transport velocity) is different for different species, and that transport will induce separation of solutes according to individual transport velocities. By definition chromatography uses this behavior in a laboratory column to separate components from a complex mixture.

The pioneering studies on multicomponent chromatography of Sillén (1951), of Klein, Toncur and Verweijen at the seawater conversion laboratory (Klein et al., 1967), and of Helfferich and Klein (1970), form the basis for a quantitative description. The theory was rapidly developed for application to enhanced oil recovery (Pope et al., 1978; DeZabalal et al., 1982). Numerical modeling of subsoil transport was almost immediately combined with multicomponent exchange formulations (Rubin and Jamies, 1973; Valocchi et al., 1981a, b; and many others more recently, cf. Yeh and Trilath, 1989, and Mangold and Tsang, 1991). Hydrochemists have at an early stage recognized that NaHCO\textsubscript{3}, waters in coastal areas are connected with cation exchange (Foster, 1958; Back, 1966; Chapelle and Knobel, 1983). It may be that the analytical tools of the chromatographers were somewhat neglected as numerical models were applied very directly to subsoil transport problems.
However, the chromatographic concepts are also appearing in the hydrogeological literature (Schwelch and Sardin, 1981; Charbonneau, 1981; 1988; Appelo et al., 1993, 1994b; Schwelch et al., 1993).

The purpose of this chapter is to show how decisive the role of multicomponent cation exchange in hydrochemistry can be and to illustrate chromatographic concepts with practical examples. Applications so far have been mainly related to man-induced effects in aquifers such as artificial recharge or injection tests. However, examples of natural water qualities that are the result of chromatography are also available (Bleckman, 1991; Manzano et al., 1992; Stuyfzand, 1993; Appelo, 1994). The in situ production requires calculations with numerical models to be able to match what is observed. On the other hand, having chromatographic concepts and simple tools helps us to gain a fundamental understanding of the processes involved. It may also help us to recognize the broader applicability of this field in geochemistry.

The chapter begins with the basic equations to calculate multicomponent equilibria and shows that calculating these equilibria is meaningful. Much of the chromatographic theory is related to front type and front development, and this is treated for one component. The concepts are illustrated with column experiments from the literature or with calculated numerical models. Then multicomponent chromatography is considered, in the sense of having a system of linear equations that can be solved by the method of characteristics, or similar, recently developed mathematical tools. Examples from the hydrochemical literature demonstrate applicability.

EXCHANGE EQUILIBRIA AND CALCULATIONS

Soil chemical laboratories express cation exchange capacity (CEC) of soils in meq/100g (dry) sample. To obtain meq/l pore water, the CEC is multiplied with 10 times the bulk density (10 × ρ, g/cm³) to give meq/cm³ sediment, and then divided by the water filled porosity (ε, ).

A CEC of 1 meq/100g, which is representative for a fine sand, amounts to 60 meq/l pore water with ρ, = 1.8 g/cm³ and ε = 0.3. The pool of exchangeable cations is therefore quite high compared to concentrations in fresh water. Figure 1 shows amounts of exchangeable cations and total cation concentrations in fresh water and in seawater, and illustrates the relative proportions.

Also indicated in Figure 1 is the multi-component character of ion exchange. The cations are in mutual competition for the exchange sites, and the ratio of sorbed over solution concentration (the distribution coefficient K, ) increases with increasing selectivity. The distribution coefficient is variable for the individual solutes, which moreover depends on the solution composition. Thus, for seawater in a fine sand, K, = 0.06 for Na⁺, while K, = 600 for protons. In fresh water with 1 mmol/l Ca²⁺ and 1 mmol/l Na⁺, K, = 0.3 for Na⁺, and at pH = 7.0, K, = 90,000 for protons. The distribution coefficients were calculated from multi-component exchanger compositions, in equilibrium with the aqueous solution. These exchanger compositions are often calculated with Newton iteration from aqueous concentrations, but analytical solution is possible by suitable rearrangement of the equations as will be shown in the following section.

Exchange Equations

Equilibrium among solute and exchangeable cations is calculated with the law of mass action. For example, for Na⁺ and K⁺ the reaction is

Na⁺ + K-X ↔ Na-X + K⁺

(1)

The law of mass action relates the activities as

Kₐₛ₆ = \frac{[Na-X][K⁺]}{[K-X][Na⁺]}

(2)

The brackets indicate activities. For the solutes these are a fraction of the standard state of 1 mol/L H₂O (thus, numerically almost equal to the concentration in mol/L). For the exchangeable cations the equivalent fraction is used (Gaines and Thomas, 1953). Activity coefficients and complexation in solution and in the exchanger are neglected when in this chapter approximate solutions are calculated; they are included in the results from numerical models that are presented for comparison. The equivalent fraction β, = [X₋]/[X+] of an exchangeable cation is calculated from measured concentrations and CEC. For example, when CEC = 1.2 meq/100g, and Na⁺ = 0.3 meq/100g, β₆ = 0.25. Because activity coefficients equal to 1 are assumed, [Na-X] = β₆ = 0.25. We also have the sum

Σ β = 1

(3)

In general for two cations μ and j, the exchange equation is:

\text{μ}X₋ght + \text{j}_X₋leftrightarrow \text{μ}X_+ + \text{j}_X_+

(4)

with

Kₐₛ₆ = \frac{β₆^{μ}[μ]^{j+}[X₋]}{β₆^{j}[j]^{μ+}[X_+]}

(5)

This equation, together with (3), allows all β’s to be determined in a multicomponent solution when the aqueous concentrations are known. To this end, β j of ion jₓ⁺ is expressed as a function of β₆;

β j = \frac{U_{j+}}{Kₐₛ₆ \beta₆^{j+}}

(6)

Figure 1. Comparison of solute concentrations in fresh water and seawater, and exchangeable on a sandy soil.
Thus, $\beta_1, \ldots, \beta_n$ are all expressed as a function of $\beta_i$. All $\beta_i$s are entered in the sum

$$\beta_1 + \beta_1 + \beta_3 + \ldots = 1$$

(3a)

to give an equation with only $\beta_i$ as the unknown. It is convenient to use a monovalent ion (Na$^+$) as the reference cation $+$, because it gives a quadratic equation for the system with Na$^+$, K$^+$, Mg$^{2+}$ and Ca$^{2+}$ (mono- and divalent ions in general). Equation (3a) can be solved to give one positive root for $\beta_{\text{Na}}$. Subsequently all other $\beta$s are obtained from (6).

The other option—calculating the solution from known exchanger composition—follows in the same way, but now the sum of the cations in solution is the equation to solve:

$$\sum_i c_i = N$$

(7)

where $c_i$ is the concentration of $i$ (mol/l), and $N$ is the normality of the solution (eq/l).

Again, it is advantageous to express all concentrations as a function of a monovalent ion (Na$^+$) as it leads immediately to a quadratic (or cubic when trivalent ions are present) equation with one unknown. Example calculations can be found in Appelo and Postma (1993) and Appelo (1994b).

A particular effect of exchange equilibrium is observed if salinity changes. When exchangeable cations form a large pool that buffers the solution composition, the ratios of solute concentrations are fixed as

$$\frac{[\text{Na}]^{1+}}{[\text{Na}]^{1+}} = K_{\text{Na}} = \frac{\beta_{\text{Na}}}{\beta_{\text{Na}}^{1+}}$$

(5a)

A 10-fold change of the Na$^+$ concentration is accompanied by a 100-fold change of the Ca$^{2+}$ concentration and a 1000-fold change of the Al$^3+$ concentration. Dilution gives a relative increase of monovalent cations, salinity increase leads to a relative increase of polyvalent cations.

Values for the exchange coefficients $K_{\text{Na}}$ are listed in Table 1. A range is indicated because they depend somewhat on the soil mineral and the solution composition (Braggenwer and Kamphorst, 1982). This is implicit to the fact that different exchange sites exist on the minerals and that activity coefficients for the exchangeable cations are assumed to be 1.

The constant for other exchange reactions between ions $\delta^+$ and $\beta^+$ can be calculated conveniently from the values in Table 1 with

$$K_{\delta} = K_{\text{Na}} \cdot K_{\text{Na}}$$

(8)

Also, it is obvious that

$$K_{\text{Na}} = \frac{1}{K_{\text{Na}}}$$

(9)

In geochemical computer models that use ion association, the exchange reaction can be calculated by splitting the exchange reaction into two association reactions of the cations with X$^-$ (Parkhurst, 1995). A reference reaction reaction has to be specified, and all the other coefficients then follow. For example, when the reference reaction is for Na-X:

$$\text{Na}^+ + X^- \leftrightarrow \text{NaX} \quad \log K = 0.0$$

(10)

then for the other cations the reaction is

$$\text{Na}^+ + X^- \leftrightarrow \text{NaX}$$

$$\log K = \log K_{\text{Na}} = -\log K_{\text{NaX}}$$

(11)

A problem may arise when the concentration of X$^-$ is a variable, e.g. when X$^-$ is made proportional to a solid that may dissolve or precipitate, or because a mineral has a variable charge that depends on solution composition (cf. Lightner’s chapter). Charge in the aqueous solution appears no longer to be conserved because the solution loses cations if X$^-$ increases and gains them if X$^-$ decreases. Charge of the aqueous solution is used in geochemical models to calculate the concentration of a component (often pH), and a computation that neglects these effects may go wrong completely. However, charge must be conserved for the combination of mobile and immobile entities of the model system. An increase of immobile charge X$, can only be due to an equivalent loss of negative charge from solution. Because the increased X$^-$ is compensated by positive counterions that are also derived from solution, the charge transfer is balanced. A similar reasoning holds when X$^-$ decreases. The total charge of either the mobile or the immobile part, therefore, remains equal.

Parkhurst (1995) has solved the problem of variable charge and charge transfer among solid and solution in PHREEQC by calculating explicitly the double layer counter- and co-ions that compensate the variable charge. The double layer charge is assigned to the immobile mineral to form a unit which remains electrically neutral. Similarly, when charge is associated to a specific mineral that precipitates or dissolves, an exchange model can be constructed in which only neutral molecules can be adsorbed (Appelo et al., 1996).
Determination of exchangeable cations

Much of the acceptance of chromatographic theory for soils and aquifers rests on experimental proof that exchangeable cations correspond to the calculated equilibria. Exchangeable cations are routinely analyzed by displacement with a solution that is free of the cations of interest (Page et al., 1982). The difficulty lies in separating the exchanged cations from the contribution by the soil solution and from the reactions that occur when an extractant is applied to the sediment sample.

The contribution of pore water can be high for Na⁺, which often has a low distribution coefficient. Pore water contributions are sometimes reduced by displacing the pore solution with alcohol, where it is assumed that the exchangeable cations are not affected. (Note that rinsing with water is strictly taboo; since a dilution of the equilibrium solution displaces the lower charged ions from the exchange complex, cf. Eqn. 5.) The influence can also be reduced by centrifuging the pore water.

Brother side reactions are dissolution of salts (notably gypsum) and carbonates, and oxidation of minerals (pyrite) in case of a reduced sediment. The latter reaction can be prevented by working under anaerobic conditions. Dissolution of minerals is corrected by analyzing SO₄²⁻ and HCO₃⁻ in the extract, and subtracting the anion concentrations from Ca²⁺ and, in case dolomite is present, from Mg²⁺. Obviously, the displacing cation must not precipitate with this anion, which precludes use of the divalent cations Sr²⁺ and Ba²⁺.

Monovalent ions are therefore preferred as displacers. A high concentration of at least 1 M is necessary for displacement of divalent and trivalent ions, which puts a claim on purity. Ammonium and the heavier alkaline ions increase proton exchange and carbonate dissolution. It makes the HCO₃⁻ correction on Ca²⁺ more difficult because part of alkalinity is compensated by protons. Lithium is not commercially available in pure enough form to analyze Na⁺, and it very readily precipitates clay and organic matter. Na⁺ is therefore the obvious choice for displacing exchangeable cations. Exchangeable Na-X can be displaced with NH₄Cl. The technique using 1 M NaCl and 1 M NH₄Cl for analyzing exchangeable cations was developed by Zuur (1938), cited by Van der Molen (1958). It has been applied by Van der Molen (1958), and in studies related to poldering in The Netherlands (Hofstee, 1971). (Poldering is the reclamtion of low-lying land from sea or river, practiced in the Netherlands.) We have found that it is the only rapid (batch) method that gives exchange coefficients for a large variation of aqueous solutions and aquifer sediments that are consistent with those in Table 1 (cf. Appelo et al., 1996).

For example, Van der Molen (1958) has determined exchangeable cations in two soils equilibrated with mixtures of seawater and distilled water. His results for two soils are compared in Figure 2 with model calculations using the log $K_m$ for the association reaction given in Table 2. To obtain a good fit of observed fractions over the full range from fresh water to seawater, the selectivity for Na⁺ has to decrease by 0.5 log-units when going from fresh water to seawater. The selectivity coefficient for fresh water yields $b_{na} = 0.6$ for seawater, whereas experimentally $b_{na} = 0.4$.

As another example, exchangeable cations in young soils that were poldered from the sea are plotted as a function of seawater fraction in Figure 3 (Groen, 1991). Only Cl⁻ was analyzed in the soil solution, and the other ions were estimated assuming that the soil solution was a mixture of seawater and 3 mM Ca(HCO₃)₂ water. The seawater fraction was based on Cl⁻ concentration. Thick lines are model exchange compositions using the coefficients from Table 2. Thin, dotted lines give compositions when the coefficients from

Table 2. Association coefficients for the reaction Na⁺/X⁻

<table>
<thead>
<tr>
<th>Ion</th>
<th>$K_m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>0.52</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.902</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0.307</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.465</td>
</tr>
</tbody>
</table>

Figure 2. Fractions of exchangeable cations on two soils in mixtures of seawater and distilled water. Analyzed fractions indicated by single points; lines are modeled concentrations with exchange coefficients from Table 2. (Reprinted by permission of the editor of Water Resources Res., from Appelo (1994)).

Figure 3. Fractions of exchangeable cations in polder soils as function of Cl⁻ concentration (seawater fraction) in the soil solution. Analyzed fractions from Groen (1991). Model lines: thick lines with variable selectivity for Na⁺ (exchange coefficients from Table 2), dotted lines with 'standard' exchange coefficients (from Table 1).
Table 1 are used. The selectivity for $K^+$ has been increased by decreasing $K_{Na}$ to 0.1, as it fits better for the illitic Dutch soils. There is clearly a lack of agreement among the determined values, and the lines only indicate the trends in these values. On the other hand, doing a calculation with an estimated soil solution composition which is not far wrong, shows that the basic theory of multicomponent exchange calculations is correct.

One may speculate why the multicomponent exchange equilibria work so well, while it should not be doubted that precise measurements on individual exchangers necessitate use of activity coefficients (Elphers and Babcock, 1975; Bischkova and Soltanov, 1985; Franklin and Townsend, 1989; Sposito, 1994). It certainly cannot be explained with double layer theory. The apparent selectivity, calculated from excess Na$^+/Ca^{2+}$ in the double layer, is about equal to the values in Table 1 when the solution has seawater normality (Bolt, 1967). However, a dilution has not much effect on the ratio of mono- and divalent ions in the double layer. The apparent selectivity (log $K_{Na}$) therefore increases markedly upon dilution; this in contrast to observations as in Figures 2 and 3.

**CHROMATOGRAPHIC PATTERNS**

With functional equilibrium relations among solute and sorbed cations, the effect of water quality changes must be considered. This is studied under the heading of ion chromatography in chemistry and chemical engineering (DeVault, 1943; Sillén, 1951; Gilkekan, 1955; Tondere, 1969; Helfferich and Klein, 1970; Vermoulen et al., 1980). The theory has been applied and verified in numerous laboratory experiments with a variety of soaks and sediments (Puppo et al., 1978; DeZabala et al., 1982; Schwertl et al., 1983; Rainwater et al., 1983; Beckman and Appelo, 1990; Appelo et al., 1990; Bond and Phillips, 1990; Grignio, 1992; Börges et al., 1993; Cernik et al., 1994; Scheidgieger et al., 1994). A chromatographic origin has been recognized for water quality changes during well injections (Valocchi et al., 1981a; Charbonnel, 1983; Herg et al., 1993). Also with large scale freshening of saline aquifers, a sequence of water qualities develops along a flow path that can be related to multicomponent cation exchange (Appelo and Willemsen, 1987; Beckman, 1991; Stuifzaand, 1993; Appelo, 1994a; Walkvani and Cardenal, 1994). It is clear that the theory can be applied in hydrogeology, and that it deserves attention as an important basic process for regulating water quality in aquifers.

The following parts of this chapter illustrate the development of chromatographic patterns and show how to calculate them in a simple way and compare these also with numerical models. First, the basic equations for single solute transport are presented and illustrated. The shape of the sorption or exchange isotherm is of fundamental importance for solute transport and determines the front type along a flowline and during passage along an observation well. This also holds for multicomponent transport, but here the equations rapidly become complex. Recourse to numerical models is then appropriate, also because more complex boundary conditions and other chemical processes can be included.

**Single solute transport, broadening fronts**

The advection-dispersion-reaction equation in one dimension gives the change in concentration with time for a solute species:

\[
\frac{dc}{dt} = -v \frac{dc}{dx} + D \frac{dc^2}{dx^2} - \frac{dq}{dt}
\]  

where $c$ is concentration in solution (mol/L), $t$ is time (s), $v$ is pore water flow velocity (m/s), $x$ is distance (m), $D$ is the dispersion coefficient (m$^2$/s), and $q$ is the sorbed concentration, expressed as a pore water concentration (mol/L). In the case of ion exchange, $q = \beta \cdot CEC \cdot 10^{-6}$ as was noted before.

Analytical solutions can be obtained for varying $q/c$, but the dispersion coefficient $D$ must be assumed zero. This is what we shall pursue here, because we already concluded that with multicomponent exchange $K_e = q/c$ for the individual elements is variable.

With $D = 0$ and the slope of the isotherm $dq/dc$, Equation (12) becomes:

\[
\left(1 + \frac{dq}{dc} \right) \frac{dc}{dt} + \frac{dq}{dx} = 0
\]

A constant concentration means $dc = 0$, and therefore:

\[
\frac{dc}{dt} = \left(1 + \frac{dq}{dc} \right) dx = 0
\]

or

\[
\frac{dx}{dt} = -\left(1 + \frac{dq}{dc} \right) \frac{dc}{dx}
\]

On combining with Equation (13), $v_c$ or the velocity of a constant concentration $c$, is obtained as:

\[
v_c = \frac{v_{H2O}}{1 + \frac{dq}{dc}}
\]

for clarity the pore water flow velocity is indicated as $v_{H2O}$. Equation (16) is similar to the retardation equation in that it shows that the velocity of a solute is retarded due to sorption. However, the velocity is now variable for different concentrations and depends on the slope $dq/dc$.

The distance $x$ traveled by a retarded solute $c$, can be simply calculated and compared with that traveled by a conservative solute $c_2$ (which has $dq/dc_2 = 0$). In both cases we have $x = vt$, and therefore:

\[
x_c = \frac{x_{c}}{1 + \frac{dq}{dc_j}}
\]

Figure 4 illustrates front development for a conservative solute $a$, and solutes $i$ and $j$ which have $c = c_i (R = 2)$ and $c = c_j (R = 1 + 2Nc_i)$. The initial concentration of all solutes is 1 at all $x$, and water enters at $x = 0$ with $c_i = c_j = c_2 = 0$. Substance $a$ has been flushed till 70 m, the location of the advective front. The position of 2 concentrations of each of the three substances is given in Table 3. Fluxing of $i$ is retarded, the concentration...
drops to zero at \( x = 70(1 + 1) = 35 \) m. Flashing of \( j \) starts earlier than that of \( i \), the concentration begins to decrease at \( x = 70(1 + 0.5) = 46.7 \) m. Smaller concentrations travel slower as the shape digic increases in accordance with Equation (17), and these concentrations have moved less. Chemicals \( a \) and \( i \) show indifferent fronts, meaning that all concentrations have identical velocity. Chemical \( j \) shows a broadening or diffuse front upon elution, also called a wave or a simple wave.

![Figure 4. Flashing of a conservative chemical (\( q_a = 0 \) for all \( c_a \)), a linearly sorbed chemical with \( R = 2 \) (\( q_j = c_j \)), and a chemical with variable \( R \) (\( q_j = c_j^L \)). The initial condition is \( c = 1 \) for all \( x \), and \( c = 0 \) at \( x = 0 \), \( t > 0 \). Thin lines are from numerical model with \( Ax = 0.1 \) m.](image)

![Figure 5. Flashing of two chemicals as in Figure 4, but with dispersion. Dispersivity \( \alpha = 3.3 \) m. Thin lines are from numerical model (\( Ax = 0.5 \) m) and from the Lindstrom et al. (1967) analytical solution for \( R = 2 \). Note that the simple approximation with Equation (17) for \( R = 2 \) is incorrect.](image)

### Table 3. Example calculations for the position of two concentrations of three substances with different isotherms during flushing along a flowline.

<table>
<thead>
<tr>
<th>( c )</th>
<th>( q_a = 0 )</th>
<th>( q_i = c_i )</th>
<th>( q_j = c_j^L )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>70</td>
<td>35</td>
<td>46.7</td>
</tr>
<tr>
<td>0.5</td>
<td>70</td>
<td>35</td>
<td>41.0</td>
</tr>
</tbody>
</table>

Results of a finite difference model are given for \( i \) and \( j \) with flux boundary conditions at \( x = 0 \) and \( \partial c / \partial x = 0 \) at \( x = \infty \) (cf. example 9.14 in Appelo and Postma, 1993). The concentration of \( j \) starts to decrease in a singular point (the derivative \( \partial c / \partial x \) is not defined). It can be seen that the numerical model shows dispersion around this point where \( c_j \) starts to fall. The rest of the \( c_j \) profile is correctly followed.

Equation (17) also gives a fairly good approximation in case dispersion is present, at least when its effect is overwhelmed by chemical dispersion (Bolt, 1982). Figure 5 shows the same case as Figure 4, with additional dispersivity \( \alpha = 3.3 \) m. The numerical model is now more correct as it uses the numerical dispersion to mimic part of the physical dispersion (cf. Appelo and Postma, 1993). The analytical solution of Lindstrom et al. (1967) is plotted for \( R = 2 \), but it is indiscernible from the numerical model in Figure 5. The approximation for \( R = 2 \) by Equation (17) is incorrect as it assumes that dispersion increases linearly with \( x \) (dispersion increases with \( \alpha \)).

### Sharp fronts

When chemical \( j \) (with \( q_j = c_j \)) enters a pristine aquifer, then again, small concentrations advance more slowly than high concentrations. This would mean that the higher concentrations of \( j \) would arrive earlier at some point than the small concentrations. This is clearly impossible. Rather, the high concentrations push up the smaller concentrations, and all concentrations arrive simultaneously. Such arrivals are evocatively denoted as self-sharpening fronts, or shocks. They form the basis for displacement chromatography.

The front position can be calculated from the integral mass balance:

\[
\Delta c \cdot (x_{1,0} - x_i) = \Delta q \cdot x_f
\]

where \( x_{1,0} \) is the position of the conservative front, and \( x_i \) the position of the sharp front for \( j \). \( \Delta c \) and \( \Delta q \) are the changes in respectively the solute and sorbed concentrations over the front. With \( x = v \cdot t \) the velocity of the front is obtained as in Equation (16):

\[
v = \frac{w_{2,0}}{1 + \frac{\Delta q}{\Delta c}}
\]

Figure 6 illustrates the fronts for chemical \( a \) and two concentrations of \( j \) along the 100 m flowline. The calculations for the front positions are given in Table 4. Note how the front for \( c_j = 0.2 \) (\( R = 3.2 \)) is retarded more than for \( c_j = 1.0 \) (\( R = 2 \)). Once more results of the numerical model are shown for comparison, but now the chemical term helps in countering numerical dispersion. The numerical model therefore almost coincides with the sharp front approximation.
Figure 6. Transport of the chemical \( J \) from Figure 4 (\( q = 6c \)) in a clean flowline at two concentrations. Note the different retardations that follow from different \( dq/dt \) at the two concentrations. Thin lines from numerical model (\( \Delta t = 0.5 \) m) almost coincide with the sharp front solution.

Table 4. Sharp front positions for two concentrations of substance \( J \) which has (\( q = 6c \)).

<table>
<thead>
<tr>
<th>( c )</th>
<th>( x_{1/2} )</th>
<th>( q )</th>
<th>( \Delta q/dt )</th>
<th>( R )</th>
<th>( x )</th>
<th>( dq/dt )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>70</td>
<td>0.44</td>
<td>2.24</td>
<td>3.24</td>
<td>47.9</td>
<td>1.18</td>
</tr>
<tr>
<td>1.0</td>
<td>70</td>
<td>1.0</td>
<td>1.0</td>
<td>2</td>
<td>61.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Two-cation exchange

With exchange, \( q \) is expressed as fraction \( \beta \) of CEC, as noted before. For a system with two cations, only one equation (16) or (19) suffices because the other cation is automatically obtained as the complement. Bond and Phillips (1990) have measured concentration profiles with Na\(^+\) or K\(^+\) displacing Ca\(^{2+}\) in an unsaturated soil column during unsteady flow infiltration. The exchange isotherms for the two ions are given in Figure 7.

The exchange isotherm for Na\(^+\) is concave at all concentrations, hence small concentrations have higher velocity than high concentrations. For Na\(^+\) entering the soil column, a broadening front results. For K\(^+\) the exchange isotherm at 0.2N shows a selectivity reversal that Mansell et al. (1993) have modeled using an additional exponent for the solute concentration ratio. The isotherm has a convex part at low K\(^+\) concentrations, and a concave part at high concentrations. Small concentrations will therefore give a sharp front. However, because with increasing K\(^+\) concentrations the slope of the isotherm increases again, the high concentrations are retarded more, thus leading to a broadening front for the highest concentrations. The turnover point lies where the isotherm slope is equal to the slope at K\(^+\) = 0.

Figure 7. Exchange isotherms for (a) Na-Ca exchange and (b) K-Ca exchange at different normality \( N \) (indicated as mol L\(^{-1}\)) (Used by permission of the editor of Water Resources Res., from Bond and Phillips (1990)).

The calculations for the two cases are somewhat elaborate because the exchange is among heterovalent ions, and because flow is unsteady. However, the above procedure of relating retardation of concentrations to isotherm slope has been used by Bond and Phillips (1990) to calculate concentrations profiles. These are compared with experimental data in Figure 8. Very clear is the fact that the Na\(^+\) profile is broadening, while the K\(^+\) front is sharp over a large domain and broadening for the highest concentrations only.

Column elution curves

It is equally simple to calculate elution curves for a column. The relative arrival time \( t_{el} \) is calculated at fixed \( x = L \), the end of column, with Equation (16):

\[
t_{el} = 1 + dq/dt
\]

(20)

where \( t_{el} \) is the time used by a conservative substance to pass through the column. The ratio \( t_{el} \) is known as the throughput ratio (Vermeulen et al., 1984). It can also be expressed as relative volumes \( V'/V_0 \), where \( V_0 \) is the pore volume of the column. If Equation (20) is condensed to just the slope of the isotherm, it indicates the pore volumes that are needed after the conservative front has passed. It has been termed the \( \psi \) condition (Sillén, 1951), or the flushing factor \( V' \) (Appelo and Postma, 1993):

\[
V' = V/V_0 - 1 = dq/dt
\]

(21)
The equation is for broadening fronts, when the slope of the isotherm is smaller at the initial condition of the column than at the end. If the slope of the isotherm decreases towards the final condition, the final condition pushes the earlier compositions forward, and a sharp front results. The integral mass balance applies again, and a sharp front flushing factor is defined as:

\[ V = \Delta q / \Delta c \]  

(22)

Column elution curves are qualitatively pictured in Figure 9.

**Sorption isotherms from elution curves**

The sorption isotherm can be deduced from a measured elution curve by integration of Equation (21). For sharp fronts obviously only one point of the isotherm is obtained. For broadening fronts the whole isotherm over the range from start to final concentration can be derived (Glückauf, 1945; Sillén, 1950) For a broadening elution curve the change of \( q \) from \( c_1 \) to \( c_2 \) is:

\[ q_2 - q_1 = \int_{c_1}^{c_2} V \, dc \]  

(23)

Thus, from a starting condition with known \( q_1, q_2 \) can be obtained by integrating the elution curve. The procedure is illustrated in Figure 10. Note that the integration is along the vertical axis from \( c_1 \) to \( c_2 \). Also note that the integration gives a negative number when performed from \( c_1 \) (high) to \( c_0 \) (low), which agrees to the negative sum \( q_i - q_f \).

**Figure 9.** Schematic representation of the response of a column for different sorption isotherms (top). The column breakthrough of a step concentration change is shown below for different isotherms: (a) linear, (b) convex, and (c) concave. (Used by permission of the editor of Environmental Science and Technology, from Bergström et al., 1993).

**Figure 10.** A broadening elution curve can be used to obtain the sorption isotherm, as illustrated for substance B. Left: Isotherms for A (linear) and B (convex). Right: Elution curves for A and B, and integration areas to obtain points of the curved isotherm of B. (Used by permission of Balkema, from Appelo and Postma, 1993).
The method was advocated as soon as the character of chromatographic behavior was fully realized (DeVault, 1943; Glickauf, 1945; Sillén, 1950). Several investigators have described the good agreement between sorption isotherms from elution curves and single points obtained from batch experiments (Glickauf, 1949; Duncan and Lischer, 1949; Ekedahl et al., 1950; Faucher et al., 1952, 1954; Merriam et al., 1952). However, it was also found that the chromatographic method could be badly in error, and in "complete disagreement with the reliable data from the equilibrium method" (Merriam and Thomas, 1956). Reference to the method in the chemical engineering literature has disappeared since. Clearly, it is not the mathematical description of the process but improper experimentation (too high flow velocity) or incorrect interpretation (neglect of dispersion) that may result in bad data.

In recent years the method has been re-advocated for obtaining sorption or exchange isotherms for natural materials (Schweidel et al., 1983; Kool et al., 1989; Griffioen et al., 1992; Bürgisser et al., 1993, 1994; Scheldegger et al., 1994). The principal attraction is that it allows to measure an entire, possibly non-linear isotherm in a one-time procedure that takes not much more time than a batch experiment needs for a single point of the isotherm. A column experiment also permits to use a high solid-solution ratio that may be necessary to measure sorption when $K_s$ is very low. Bürgisser et al. (1993) have measured a sorption isotherm of Cd$^{2+}$ on silica sand by the chromatographic method, as shown in Figures 11 and 12. The column experiment was accomplished at two different flow velocities to show that kinetic effects are absent. The sorption isotherm that was calculated from the elution curve is in very good agreement with results from batch experiments (Fig. 11). With a density of the sand $\rho = 2.31$ g/cm$^3$ and porosity $\varepsilon = 0.45$, the $K_s$ for Cd$^{2+}$ decreases from approximately 5 to only 0.85 at respectively 1.0 mM and 100 mM Cd$^{2+}$. Also dyele decreases from 4.2 to 0.4 between these two concentrations.

Bürgisser et al. analyzed their experiment as a Cd$^{2+}$ sorption process for which the isotherm needs to be found by experimentation. It is illustrative to interpret it as an exchange process of Cd$^{2+}$ for Na$^+$ from the background electrolyte. The exchange reaction is:

$$\text{Na}^+ + \frac{1}{2} \text{Cd}-\text{X} \Leftrightarrow \text{Na}-\text{X} + \frac{1}{2} \text{Cd}^{2+}$$

With $K_{\text{MCX}} = 0.4$ from Table 1, observed exchangeable Cd$^{2+}$ at 17.5 μM Cd$^{2+}$ is obtained with CEC = 0.056 eq/kg sand. The calculated isotherm is shown in Figure 13. It has an initial steep slope that flattens rapidly when concentrations increase above 17.5 μM. Observed exchangeable Cd$^{2+}$ (from batch experiments and from column experiment with 17.5 μM Cd$^{2+}$) is higher. The higher concentrations can be fitted by increasing the CEC to 0.146 eq/kg, and increasing $K_{\text{MCX}}$ to 0.9 (note the very small exchange capacity of this almost pure cristobalite). This isotherm has a smaller slope at low concentrations that shows more gradual increase towards the higher isotherm points. The small initial slope gives rapid elution of the low concentrations, as is illustrated in Figure 14. Comparison with the observed elution curve suggests that two sorption sites exist on the sand, one with
a standard K that dominates elution of low concentrations < 5 μmol/L, and one with reduced selectivity for C4 that determines elution of higher concentrations. The combined isotherm with 0.028 meq/kg standard sites (K_{std} = 0.4) and 0.165 meq/kg low sorption sites (K_{low} = 1.55) is also shown in Figure 13, and the corresponding elution curve in Figure 14.

Figure 14. Calculated breakthrough curves for the column experiments of Buegisser et al. (1993), shown in Figure 12. Three different exchange isotherms have been used, plotted in Figure 13.

The example is of interest as the chromatographic method complements the information from batch experiments. A sound interpretation requires that dispersion is very small (αL/D > 100, as in the example of Buegisser et al.), or that the elution curve is modeled numerically with a least squares optimization of the adjustable parameters (Kool et al., 1989; Van Velthuizen et al., 1995).

MULTICOMPONENT CHROMATOGRAPHY

With more than two exchanging cations, the isotherm slope dp/dc for each c_j becomes a variable for all c_j. Still, the mass balance given by Equation (21) for broadening fronts, or by Equation (22) for sharp fronts must hold for each ion. In other words, the flushing factors must be equal for all ions so that in a given solution composition all concentrations have the same velocity. In that case:

\[ V' = \frac{d q_j}{d c_j} = \frac{d q_k}{d c_k} = \ldots = \frac{d q_n}{d c_n} \]  (25)

or for a sharp front:

\[ V' = \frac{\Delta q_j}{\Delta c_j} = \frac{\Delta q_k}{\Delta c_k} = \ldots = \frac{\Delta q_n}{\Delta c_n} \]  (26)

If all ions have to have equal velocity only restricted compositions are possible. When equal velocity exists for all ions according to Equation (25) or (26) the composition is said to be coherent (Helfferich and Klein, 1970). The problem is to find these compositions and their succession when a column in a certain initial condition, is changed by injection of a solution with another composition.

Klein et al. (1967) noted that V' + 1 in Equation (25) is identical to pore volumes eluted. At the corresponding point of the elution curve only dp/dc for the multicomponent solution has to be solved to find c. They have shown that the derivative of the log transform of the equilibrium exchange facilitates the problem. Equation (26) can also be solved if only shock fronts occur (Appelo et al., 1993). In both cases the number of roots for V' or V is equal to n - 1, where n is the total number of exchanging cations. In case of broadening fronts, these roots are successively followed from small V' to large V', stopping off when an intermediate composition is reached, and stopping again when V' + 1 equal the eluted pore volumes. For a system with homovalent cations, the complete sequence can be deduced once and for all by using the H transformation (Helfferich, 1967; Helfferich and Klein, 1970).

Self-similar solution

It is also possible to view the whole system as a Riemann problem and solve it by using the method of characteristics (Tondre, 1969; Rhee et al., 1970, 1989) or by using the self-similar solution developed by Lux (1957, 1975) and Smaller (1983) as has been done by Charousek (1988) and by Thoelen and Hanmer (1991). We follow here the treatment by Charousek (1988) as it allows for a particularly elegant and quick solution of the system of chromatographic equations.

For a multicomponent system, in which \( q_j = f(c_{eq}) \), a set of mass balance equations must be solved. Thus, if n species compete for the exchange sites, (13) becomes:

\[ \frac{\partial c_j}{\partial t} + \frac{\partial q_j}{\partial c_j} = \frac{\partial q_j}{\partial c_j} = \ldots = \frac{\partial q_n}{\partial c_n} = 0 \]  (27)

\[ \frac{\partial c_{eq}}{\partial t} + \frac{\partial q_{eq}}{\partial c_{eq}} = \frac{\partial q_{eq}}{\partial c_{eq}} = \ldots = \frac{\partial q_{eq}}{\partial c_{eq}} = \frac{\partial q_{eq}}{\partial c_{eq}} + \frac{\partial c_{eq}}{\partial x} = 0 \]  (28)

We define \( v = x \)r (the water flow velocity \( v \) is steady), and write (27) in matrix form as:

\[ (I + Q) \frac{\partial c}{\partial t} + I \frac{\partial c}{\partial y} = 0 \]  (29)

where \( I \) is the identity matrix, \( Q \) the matrix given by the differential coefficients \((\partial q_j/\partial c_j)_{r=1,\ldots,n}\), and d\( dt \) and d\( dy \) are column vectors. The matrix \((I + Q)\) has eigenvalues \( \lambda \) which are found from setting the determinant:

\[ | I + Q - \lambda I | = 0 \]  (30)

It can be shown that all roots are real and distinct for the multicomponent exchange equations. The roots \( \lambda \) are equal to the flushing factors \( V' + 1 \), and thus represent
retardation factors. They may be ordered from $\lambda_1 < \lambda_2 < \ldots < \lambda_n$.

The Equations (27) form a quasi linear system of partial differential equations of first order. The initial and boundary conditions which make its solution a Riemann problem are:

$$
y > 0, t = 0: c = c^{(0)}, q = q^{(0)} = f(c^{(0)})
$$

$$
y = 0, t > 0: c = c_0, q = q_0 = f(c_0)
$$

(30)

Now a self-similar variable $\theta = \theta(\bar{x})$ is defined such that $c = c(\theta)$. It can be used to transform (28) into

$$
\left[(I + Q) \frac{\partial c}{\partial r} + f c \frac{\partial \theta}{\partial y} \frac{\partial c}{\partial \theta}\right] = 0
$$

(31)

This equation can have only a non-trivial solution if the determinant of the coefficient matrix is zero. The eigenvalues defined by Equation (29) are identical to

$$
\lambda = -\frac{\partial \theta}{\partial y} \frac{\partial c}{\partial \theta}
$$

(32)

For each eigenvalue, say $\lambda_n$, the vector $dc/d\theta$ is a right eigenvector of $(I + Q)$:

$$
\frac{dc}{d\theta} = r^*(c)
$$

(33)

This equation is the essence of the solution of the Riemann problem. Since there are $n-1$ eigenvalues for $(I + Q)$, there are also $n-1$ eigenvectors and $n-1$ intermediate compositions. Each eigenvector represents a part of the compositions that have to be followed from $c^{(0)}$ to $c$ when going in the upstream direction along $x$. When going from $c^{(0)}$ in the upstream direction ($x$ decreases), first the eigenvector that belongs to $\lambda_1$ is integrated. Along this path, $\lambda_1 \bar{x} = \lambda_1 x$. When $\lambda_1$ of the first intermediate composition is reached, that composition is maintained until $\lambda_1 \bar{x} = \lambda_2$. Then the second eigenvector is taken until $\lambda_2$ of the second intermediate composition is reached, etc. The intermediate compositions are called plateaux; and the interconnections via the eigenvectors are termed paths (Helfferich and Klein, 1970).

The above sequence is valid for broadening waves along the eigenvectors, i.e. $\lambda_n$ of the $k$th eigenvector increases upstream. For shock fronts the eigenvalue $\lambda_n$ that belongs to the $k$th composition is smaller than $\lambda_n$ of the $k$th composition. In that case the Rankine-Hugoniot set of Equation (26) must be used.

The general situation for a stepover on the plateau composition or on the following eigenvector is shown in Figure 15. The curved lines are for eigenvectors along which $\lambda$ increases, and which show gradual composition changes. The straight lines are for shocks, where the composition abruptly changes from the one at the downstream end to the plateau point, or from this plateau point to the upstream composition.

In principle, the slope of the isotherm of any binary couple of cations that participates in the chromatographic sequence can be inspected to see whether a shock or a broadening front will occur. If $dq/dc$ increases in the upstream direction, a wave develops. If it decreases, a shock occurs. Rule based sequences can be given (Vermeulen et al., 1984). For example, the selectivity of natural exchangers for Na$^+$, K$^+$, Mg$^{2+}$ and Ca$^{2+}$ increases in the given order (Table 1). When, going upstream from $s_{12,0}$, a decrease of an ion is accompanied by increase of a less selected ion, a wave develops. When it is accompanied by increase in concentration of a more selected ion, a shock occurs. In terms of eigenvalues (or fluxing factors + 1) of the system the following holds for the $k$th transition (Charbonneau, 1988; cf. Figure 15, $c$ is the plateau composition at the intersection point).

![Figure 15. Possible locations of intersection points (plateaux) of two eigenvectors](image)

wave-wave:

$$
\lambda_{ij}(c^e) \geq \lambda_{jj}(c^e) > \lambda_{ij}(c^e) \geq \lambda_{ii}(c^e)
$$

wave-shock:

$$
\lambda_{ij}(c^e) \geq \lambda_{ij}(c^e) > \lambda_j(c^e) \geq \lambda_i(c^e)
$$

(34)

shock-wave:

$$
\lambda_{ij}(c^e) \geq \lambda_{ij}(c^e) > \lambda_i(c^e) \geq \lambda_j(c^e)
$$

shock-shock:

$$
\lambda_{ij}(c^e) \geq \lambda_{ij}(c^e) > \lambda_i(c^e) \geq \lambda_j(c^e)
$$

The sequences will be illustrated below.

For a system with all cations of the same charge (homovalent exchange) all the paths can be made straight by suitable mapping (Helfferich and Klein, 1970; Rhee et al., 1970, 1989). It is obtained setting the parameters $\theta$ and $\kappa$:

$$
\theta = 1 + \sum_{i=1}^{n} c_i K_{in}
$$

(35)

and

$$
\kappa = c_j (K_{jn} - 1)
$$

(36)

so that

$$
\beta_j = \frac{c_j}{\sum_{i=1}^{n} c_i K_{in}} = \frac{\kappa_j}{\kappa(K_{jn} - 1)}
$$

(37)

This makes $\beta_j$ a simple function of $\theta$. The further development requires rather elaborate calculations, cf. Rhee et al. (1989).

For a heterovalent system, which will be most often encountered in nature, the paths are curved, and Equation (33) needs to be integrated. This can be done as shown by
Charbeneau for a system with three cations, and therefore with two eigenvectors. The integral is:

$$e^{x+t} = e^x + \sum_{i} e^x \int r^i \, dt$$  \hspace{1cm} (38)$$

It can be approximated, using the trapezoidal rule:

$$e^{x+t} = e^x + \frac{1}{2} [r^j e^{x} + r^{j+1} e^{x+1}] \Delta t_j$$  \hspace{1cm} (39)$$

where $\Delta t_j = \theta_{j+1} - \theta_j$. With the notation $r^j(k)$ representing the average $j$th eigenvector along the $k$th composition path, (38) can be written

$$e^{x+t} = e^x + \Delta t_j r^j(k)$$  \hspace{1cm} (40)$$

Thus, $r^j(k)$ is the $j$th eigenvector, averaged in the $k$th characteristic direction. There is one Equation (40) for each composition path. They are connected by the requirement that

$$e^{x(t)} - e^{x(t')} = \sum_{j=1}^{n} \Delta t_j r^j(i)$$  \hspace{1cm} (41)$$

Charbeneau (1988) has solved Equation (40) and (41) for two 3-cation systems, the laboratory experiment of Rainwater et al. (1987) and the field injection of Valocchi et al. (1981a, b). The latter will be discussed fully in the following parts. In principle, the sharp front Equations (26) and the differential Equation (33) for a widening wave can be used for systems with more than 3 cations. This approach is now being implemented in a computer program (Van Velthuizen and Hendriks, pers. comm.). The great advantage is that an exact solution is obtained of the chemical process during transport, without ghost peaks that may arise due to numerical oscillations, or spreading due to artificial dispersion that sometimes hampers the more common numerical solutions. Also, this program indicates exactly whether a shock or a wave occurs.

FIELD EXAMPLES OF ION CHROMATOGRAPHY

The case of Valocchi et al. (1981)

Valocchi et al. (1981a, b) injected fresh water in a brackish water aquifer shown in outline in Figure 16. The CEC of the recharged silty sand aquifer was 750 meq/l. The native brackish water had high Na$^+$ and Mg$^{2+}$ concentrations, while the recharge water composition was dominated by Na$^+$ and Ca$^{2+}$ but at about 10 times lower concentrations. Table 5 gives the water compositions, the exchangeable cations associated with those water compositions, and the difference in the exchangeable cation concentrations.

The injection of fresh water is accompanied by a loss of Na$^+$ and Mg$^{2+}$ from the exchanger, and an increase of Ca$^{2+}$, and an increase of Ca$^{2+}$ X. It is of interest to note that this loss of Na X takes place although Na$^+$ as percentage of the three cations is higher in the injected water than in the native water. This is entirely due to the lower salinity of the injected solution. In equilibrium with a given exchanger composition, the solute ratio [Na$^+$]/[Mg$^{2+}$] and [Na$^+$]/[Ca$^{2+}$] remain the same, independent of the salinity of the solution as follows from Equation (5). When Na$^+$ is diluted 6.5 times from 86.5 to 13.3 mmol/l, Mg$^{2+}$ and Ca$^{2+}$ are diluted (6.5)$^2 = 42$ times, cf. Table 5.

![Figure 16. Outline of aquifer used for injecting fresh water by Valocchi et al. (1981a). (Used by permission of the editor of Water Resources Research.)](image-url)

In this three-cation case, two eigenvectors must be followed from the initial to the injected composition, and one intermediate composition should be found between the (diluted) initial and injected compositions. Because it involves a displacement of Na$^+$ and Mg$^{2+}$ by Ca$^{2+}$, and because Ca$^{2+}$ is selected above the other two cations, the slope of the isotherm of any of the two binary pairs decreases in the upstream direction. Therefore, shocks fronts are expected.

Figure 17 shows the trace of the Mg$^{2+}$ and Ca$^{2+}$ concentrations observed by Valocchi et al. (1981a) in well S23 at 16 m from the injection well. The full line is the computer simulation by Valocchi et al., the dotted line is a chromatographic pattern calculated for sharp fronts by Appelo et al. (1993). Concentrations drop when one pore volume (295 m$^3$ from injection well to S23) has been injected (the value of 295 m$^3$ was found by numerical.
modeling of the C1 breakthrough curve; Appelo et al. used 260 m$^3$. The Ca$^{2+}$ and Mg$^{2+}$ concentrations remain at the (diluted) initial equilibrium concentrations until the first shock arrives with $V' = 25.3$ after $25.3 \times 295 + 295 = 7738$ m$^3$. Then the Na$^+$ concentration drops to almost the final concentrations, and the surplus of Mg$^{2+}$ is flushed from the exchanger until the final concentration arrives with $V' = 113.2$ after $113.2 \times 295 + 295 = 33689$ m$^3$.

![Image of Concentration Curves](image.png)

Figure 17. Concentrations of Ca$^{2+}$ and Mg$^{2+}$ in water from observation well S23 during injection of fresh water (Valocchi et al., 1981). The results of the sharp front approximation are shown hatched (used with permission of the editor of the Journal of Hydrology, from Appelo et al. (1993)).

The condition for a shock front is given by Equation (34). Eigenvalues (shifting factors) are smaller for the upstream composition (which arrives later at the observation point). Figure 18 shows the eigenvalues for the three compositions of the Valocchi case and the transitions at the shock fronts. The first shock is pushed by $V'_2 > V'_1$. The second shock similar by $V'_3$. Since also $V'_2 > V'_1$, the criteria for shock fronts are fully met.

**Side reactions in the Valocchi case.** Valocchi et al. did not refer to minerals in the aquifer, but calcite is ubiquitous and can be expected to be present. The decrease of Ca$^{2+}$ concentrations during the chromatographic sequence will then be compensated by calcite dissolution:

$$
\text{H}^+ + \text{CaCO}_3 \rightarrow \text{Ca}^{2+} + 2 \text{HCO}_3^-
$$

(42)

The increased availability of Ca$^{2+}$ will accelerate the chromatographic sequence. This also follows from the smaller change $V' = \Delta q_{Ca}/\Delta C_{Ca}$ since

$$
\Delta q_{Ca} = \Delta C_{Ca} \times V' + \Delta C_{Ca}^2
$$

(43)

where $\Delta C_{Ca}^2$ is the change in calcite concentration in the aquifer sediment (expressed as mol/l of water). It is possible to calculate fronts for a combination of exchange and dissociation and precipitation (Harnsten and Bolh, 1982; Brysbaert et al., 1987; cf. also Lefevre et al., 1993). Here, we illustrate the effect with a numerical simulation of the complete reaction, assuming that calcite is not exhausted.

In principle the loss of Ca$^{2+}$ from solution is sufficient to drive the dissolution reaction. However, the amount that dissolves is small, because pH rapidly increases to 10. This is not observed in aquifers, because of proton buffering. Reaction (42) indicates that some form of proton buffering will be present, that will keep pH at about 7 to 8. Proton buffering may be due to desorption of protons from oxides and organic matter, or perhaps due to desorption of complexes, in combination with reaction of oxides (Griffioen, 1993).

For the model calculation done here, it was assumed that a constant CO$_2$ pressure of 0.01 atm was the source of protons. Figure 19 shows model results obtained with the hydrogeochemical transport model PHREEQM (Appelo and Postma, 1993) when the exchange reaction and the calcite equilibrium reaction are both included.

About 0.94 mmol/l calcite dissolves over the interval of the chromatographic sequence which lasts 170 pore volumes. This amounts to $170 \times 0.94 \times 295 = 47.14$ kmol calcite in total. Figure 19 also shows the modeled Ca$^{2+}$ concentration for the case without calcite dissolution. The main difference lies in the higher Ca$^{2+}$ concentration in the initial dilution plateau that is reached when calcite equilibrium is included, and also in that the complete reaction finishes more rapidly. However, the overall pattern is not much different, which points to the dominance of the cation exchange reaction. One may speculate that dissolution of calcite has been an actual reaction in the Valocchi experiment. In that case the exchange capacity will be probably somewhat higher (CEC = 1000 mmol/l) than noted by Valocchi et al. (1981a).
Inverting water compositions. It is interesting to invert the water compositions in the Valocchi case and inject brackish water into a fresh aquifer. The initial composition is given in Table 6. Na⁺ and Mg²⁺ increase in the upstream direction, and Na-X and Mg-X must increase at the cost of Ca-X. Figure 20 shows the solute concentrations for the ideal chromatographic case without dispersion.

There are two eigenvectors and one plateau composition. Because the less selected ions increase upstream, the paths are waves. The first one starts when the first eigenvalue of the first composition is equal to the number of pore volumes that have been injected \((V_1^1 + 1 = 2.56)\). It goes on until the first plateau composition is reached \((V'_1^1 + 1 = 3.46)\). This composition is maintained until the second eigenvalue is equal to the injected pore volumes. Then the second eigenvector is followed up to the injected composition. The development of the eigenvalues for this system is given in Figure 21. Note that the overall response is much quicker than in the real case discussed earlier, because higher concentrations in the injected solution allow a larger \(Δc\).

**Effects of salinity pulses**

The response to groundwater salinity changes is clearer with a dilution because \(Δc\)'s are limited by \(N\), and the flushing factors are accordingly larger. It can nevertheless be observed in the passage of the salt pulse when the exchangeable cations continue to dominate over solute cations (Bjerg et al., 1993; Cezar et al., 1989). Cezar et al. (1989) injected NH₄Br in an aquifer and analyzed the passage of the pulse in an observation well 1.5 m downstream. The arrival of Br⁻ was accompanied by an increase of \(N\) from 0.5 to 1.8 mmol/l, as shown in Figure 22. The ratio of the divalent cations over Na⁺ changed from 0.33 in the native water to a maximum of 0.78 at the peak of the Br⁻ concentration, strictly conforming to Equations (5) and (7) (Fig. 23).

Salinity pulses are naturally occurring in soils during sequences of dry and wet years. A particular example has been noted by Hansc and Postma (1995) in a 4 to 5 m thick unsaturated zone near the coast of Denmark. Acidification has caused dissolution of Al⁢³⁺ from minerals in the sand, and Al⁢³⁺ concentrations as high as 0.8 mmol/l were observed. When in a dry year the Cl⁻ concentration increases, equilibrium with the exchange complex requires that Al⁢³⁺ increases by \(n\) when Na⁺ increases by \(n\). Because the Al⁢³⁺ concentration in the soil solution is in equilibrium with gibbsite, the increase leads to precipitation of...
Figure 24 shows an observed profile, note that Al in the soil solution is highest at the highest Cl concentration. Figure 25 shows calculations of a salt pulse through the profile, with cation exchange and gibbsite equilibrium. Essentially the reaction mechanism is as noted above. The solute concentrations of the salt pulse rapidly equilibrate with the exchange complex in the upper part of the profile. Na⁺ is sorbed, and Mg²⁺ and particularly Al(OH)₃ are desorbed. The equilibrium composition then travels indifferently through the soil. Figure 25 shows the composition when the salt pulse has arrived at -4 m. Note that the exchangeable cations do not change over the salt pulse but that the relative proportions of the solute ions differ quite markedly.

Freshening of saline aquifers

NaHCO₃ waters are found in many Tertiary aquifers along the coast of western Europe (Walraevens and Cardenal, 1994) and eastern U.S.A. (Foster, 1953; Back, 1966; Chapelle and Knobel, 1983). The water quality has been related to cation exchange of Na⁺ for Ca²⁺ from fresh Ca(HCO₃)₂ water. The freshening of the (initially) saline aquifer was induced by the drop of sea level during the Pleistocene. The aquifers also contain Mg(HCO₃)₂ waters, which have been related to transformation of Mg-calcite into a pure carbonate (Chapelle and Knobel, 1983). An attractive alternative to the carbonate reactions is to assume a chromatographic sequence similar to the Valdocci case (Appelo, 1994a). A soil exchanger in equilibrium with seawater has also increased Mg-X₃ (cf. Fig. 2 and Fig. 3). Freshening will lead to a sequence in which Na⁺ is removed first and then Mg²⁺.

The sequence is present in an exemplary form in the aquifer, Maryland, U.S.A. (Fig. 26). Observed water qualities along the average flowpath even show a K⁺ peak between the high Na⁺ and Mg²⁺ concentrations (Fig. 27). The pattern could be modeled as a cation exchange process, as shown by the model lines in Figure 27.
aquifer. The measured cation concentrations are compared with concentrations calculated for conservative mixture of fresh and saline water in Figure 28.

![Diagram](image.png)

Figure 28. Analyzed (— O) and theoretical mixed (— *) water compositions in the upper aquifer of the Llobregat delta. [From Manzano et al. (1992)].

The initial effect of diffusion in this case is a dilution of pore water. The dilution is accompanied by relative increase of the monovalent ions and a decrease of the divalent ions. The changes are relative to conservative mixing and are identical to the examples discussed earlier. The Ca\(^{2+}\) concentration decreases here to below the fresh water concentration, similar to the Valbici case. Manzano et al. have modeled the concentration profiles and observed that varying \(K_{\text{eq}}\) for the exchange reaction had only minor influence on the calculated solute profiles. This can now be understood fully, because in the model calculations the solute ratio \(I/Na^{+}\) is constant by the exchange equilibrium with \(K_{\text{eq}}\beta/N_{\text{Na}}\) (Eqn. 5). The latter quotient is balanced by the (constant) initial saline water composition, in which the ratio of the \(\beta\)'s compensate for changes in \(K_{\text{eq}}\). This will change the available mass of \(I-X_{Na}^{+}\), but these are only noted with transport and in the onset of the next composition path that is followed in the chromatographic pattern.

**SUMMARY**

We presented an overview of chromatographic effects on natural water qualities. We started with multicomponent ion exchange and have shown that simple equilibrium calculations are valid for natural waters and (correctly) measured exchangeable cations. Chromatography involves the separation of ions due to different transport velocities for different concentrations. The fundamental equation for calculating transport velocity is mass balance. Most simply, it can be stated in the form \(dC/dt = V \cdot dC/dx\). It contends that a change in sorbed concentration must go with a change in solution concentration over a fixed
solution volume (or time). The change in solution concentration can be instantaneous as in the equation, and it will lead to a wave; the solution volume is given by the change of slope of the isotherm dy/dx. It can be finite, and the solution volume is given by ΔVΔt; this will give a shock-like change in concentrations. For multicomponent exchange and transport, the dy/dx term must be equal to all solutes in the solid-solution equilibria. This relationship can be exploited to deduce chromatographic waves and shocks, the separations of ions, and the velocity of compositions and composition transitions in general. Advances in the mathematical description of these systems have been presented. They were found to be applicable to various hydrochemical field situations with transient water qualities.

In many natural settings the effects of a salinity pulse are the most obvious. These can be simply calculated. The ratio of heterogeneous ions in solution after a change in total concentration (c(eq)) are found from:

$$\frac{c_i}{c_j} = \text{constant}$$

When the salinity pulse develops into a block, a full chromatographic sequence will be observed. These sequences were illustrated for the three cation injection cases of Valsecchi et al. (1981a,b) and for a freshening aquifer.

**Symbols**

**Greek letters**

$\beta_1$, Equivalent fraction of CEC occupied by cation $i$ (-)

$\varepsilon$ (Water filled) porosity (-)

$\theta$ Self-similar variable, $\theta = \theta(c, x, y, z)$(mol/l)

$\lambda$ Eigenvalue of the matrix $(I + Q)(-)$

$\rho_s$ Bulk density (g/cm$^3$)

**Latin letters**

$c_i$ Solute concentration of $i$ (mol/l)

c Vector of solute concentrations

CEC Cation exchange capacity (meq/100g soil, or mol/l pore water)

$I$ Identity matrix

$Q$ Coefficient matrix of multicomponent exchange (deg/act) $y \rightarrow x$

$q_i$ Sorbed or exchangeable concentration of $i$ (mol/l pore water)

$\lambda$ k$^a$ eigenvector

$V^a$ Flushing factor (-)

$V^p$ Sharp front flushing factor (-)

$v$ Porosity flow velocity (m/s)

$z$ Charge on ion $\Lambda$

**ACKNOWLEDGMENTS**

Peter Lichtner and Rien van Veldhuizen are gratefully acknowledged for critical reading of the manuscript. The EEC funded Palaux project provided financial support.


