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                            EQUATIONS FOR SPECIATION AND FORWARD MODELING

In this section of the report, the algebraic equations used to define thermodynamic activities of aqueo

species, ion-exchange species, surface-complexation species, gas-phase components, solid solutions, an

phases are presented. First, thermodynamic activities and mass-action equations are described for aqueo

exchange, and surface species. Then, a set of functions, denoted , are defined that must be solved simul

to determine equilibrium for a given set of conditions. Many of these functions are derived from mole-balan

equations for each element or element valence state, exchange site, and surface site or from mass-action e

f
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for pure phases and solid solutions. Additional functions are derived for alkalinity, activity of water, aqueo

charge balance, gas-phase equilibria, ionic strength, and surface-complexation equilibria. Each function is r

to contain a minimum number of variables, such that the number of functions equals the number of variable

program uses a modified Newton-Raphson method to solve the simultaneous nonlinear equations. This m

uses the residuals of the functions and an array of partial derivatives of each function with respect to the 

master unknowns or master unknowns. For clarity, the set of variables used in partial differentiation are refe

as “master unknowns”. The total derivatives of each function, , will be presented without derivation. In th

following equations, lack of a subscript or the subscript “(aq)” will refer to entities in the aqueous phase, “

refers to exchangers, “(g)” refers to gases, “(s)” refers to surfaces, “(ss)” refers to solid solutions, and “(p)”

to phases.

Activities and Mass-Action Equations

In this section the activities of aqueous, exchange, and surface species are defined and the mass-a

relations for each species are presented. Equations are derived from the mass-action expression for the 

each species in the chemical system in terms of the master unknowns. These equations are then differentia

respect to the master unknowns. Later, these equations for the moles of a species and the partial derivative

substituted into the constituent mole-balance, charge-balance, and phase-equilibria functions.

Aqueous Species

PHREEQC allows speciation or equilibration with respect to a single aqueous phase. However, multipl

aqueous phases may be defined in the course of a run and an aqueous phase may be defined as a mixture

more aqueous phases (seeMIX  keyword in “Description of Data Input”). The dissolved species in the aqueo

phase are assumed to be in thermodynamic equilibrium, with one exception; in initial solution calculations

disequilibrium among valence states of redox elements is allowed. The unknowns for each aqueous speci are

the activity,ai, activity coefficient, , molality,mi, and moles in solution,ni.

PHREEQC rewrites all chemical equations in terms of master species. There is one master aqueous s

associated with each element (for example, Ca+2 for calcium) or element valence state (for example, Fe+3 for ferric

iron) plus the activity of the hydrogen ion, the activity of the aqueous electron, and the activity of water. S

programs, for exampleMINTEQA2 (Allison and others, 1990) andMINEQL+ (Schecher and McAvoy, 1991) use the

term “component” for these species, but that terminology is not used here because of confusion with the de

of component for the Gibbs’ phase rule. ForPHREEQC, the identity of each aqueous master species is defined w

SOLUTION_MASTER_SPECIES data block (see “Description of Data Input”). The numerical method reduc

the number of unknowns to be a minimum number of master unknowns, and iteratively refines the values o

master unknowns until a solution to the set of algebraic equations is found. The master unknowns for aqu

solutions are the natural log of the activities of master species, the natural log of the activity of water,

ionic strength, , and the mass of solvent water in an aqueous solution,Waq.

The following relationships apply to all aqueous species (except aqueous electrons and water itself)

 and . Equilibrium among aqueous species in an ion-association model requires tha

mass-action equations for aqueous species are satisfied. For example, the association reaction for the aq

f

γ i

aH2O
µ

ai γ imi= ni miWaq=
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species  is . The logK for this reaction at 25oC is 2.3, which results in the

mass-action equation:

. (1)

In general, mass-action equations can be written as

, (2)

whereKi is a temperature-dependent equilibrium constant,cm,i is the stoichiometric coefficient of master speciesm

in speciesi and is the total number of aqueous master species. The values ofcm,i may be positive or negative.

For PHREEQC, terms on the right-hand side of an association reaction are assigned negative coefficients and

on the left-hand side are assigned positive coefficients. The same formalism applies to master species, wh

 mass-action equation is simply .

The total moles of an aqueous speciesi can be derived from the mass-action expression:

. (3)

The Newton-Raphson method uses the total derivative of moles with respect to the master unknowns. The

derivative is

. (4)

Activity coefficients of aqueous species are defined with the Davies equation:

, (5)

or the extended orWATEQ Debye-Hückel equation:

, (6)

where zi is the ionic charge of aqueous speciesi, andA andB are constants dependent only on temperature. Eq

tion 6 is the extended Debye-Hückel equation, ifbi is zero, or theWATEQ Debye-Hückel equation (see Truesdell

and Jones, 1974), ifbi is not equal to zero. In the extended Debye-Hückel equation,  is the ion-size param

whereas in theWATEQ Debye-Hückel equation  and bi are ion-specific parameters fitted from mean-salt activ

ity-coefficient data. Unless otherwise specified in the database file or the input data set, the Davies equation

for charged species. For uncharged species, the first term of the activity coefficient equation is zero, and theWATEQ

Debye-Hückel equation reduces to the Setchenow equation ( ) (see Langmuir, 1997 for discussi

Unless otherwise specified,bi is assumed to be 0.1 for all uncharged species.

The partial derivatives of these activity coefficient equations with respect to ionic strength are

CaSO4
0

Ca
2+

SO4
2-

+ CaSO4
0

=

10
2.3

a
CaSO4

0

a
Ca2+aSO4

2-

--------------------------=

Ki ai am
c– m i,

m

Maq

∏=

Maq

1
am

am
------=

ni miWaq KiWaq

am
cm i,

m

Maq

∏
γ i

-------------------= =

dni ni dln Waq( ) cm i, dln am( )
m

Maq

∑ µ∂
∂ ln γ i( )dµ–+=

γ ilog Azi
2 µ

1 µ+
----------------- 0.3µ– 

 –=

γ ilog
Azi

2 µ

1 Bai
o µ+

---------------------------– biµ+=

ai
o

ai
o

lnγ i biµ=
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, (7)

for the Davies equation and

, (8)

for the extended orWATEQ Debye-Hückel equation.

For data input toPHREEQC, the chemical equation for the mole-balance and mass-action expressions, th

K and its temperature dependence, and the activity coefficient parameters for each aqueous species are 

through theSOLUTION_SPECIES data block. Master species for elements and element valence states ar

defined with theSOLUTION_MASTER_SPECIES data block. Composition of a solution is defined with the

SOLUTION  or SOLUTION_SPREAD data block (see “Description of Data Input”).

Exchange Species

Ion-exchange equilibria are included in the model through heterogeneous mass-action equations an

mole-balance equations for exchange sites.PHREEQC allows multiple exchangers, termed an “exchange

assemblage”, to exist in equilibrium with the aqueous phase. The approach uses mass-action expressions

half-reactions between aqueous species and a fictive unoccupied exchange site (Appelo and Postma, 1993

exchanger. This unoccupied exchange site is the master species for the exchanger and the log of its activ

additional master unknown. Its identity is defined withEXCHANGE_MASTER_SPECIES data block (see

“Description of Data Input”). However, the master species is not included in the mole-balance equation fo

exchanger, forcing its physical concentration to be zero. Its activity is also physically meaningless, but is su

all of the exchange sites are filled by other exchange species.

The unknowns for exchange calculations are the activity, , which is defined to be the equivalent fra

in PHREEQCtimes an activity coefficient, , and the moles, , of each exchange species, , of exchangere. The

equivalent fraction is the moles of sites occupied by an exchange species divided by the total number of ex

sites. The activity of an exchange species is , where  is the number of equivalents of

exchanger,e, occupied by the exchange species , and  is the total number of exchange sites for the

exchanger, in equivalents. Note that is the total number of equivalents of the exchanger in the system, w

not necessarily equal to the number of equivalents per kilogram of water (eq/kgw) because the mass of w

the system may be more or less than 1 kg. By default, the activity coefficient for an exchange species is 1

optionally, a Davies, extended Debye-Hückel, orWATEQ Debye-Hückel activity coefficient can be used, which i

based on the aqueous ionic strength and the number of equivalents of exchange sites occupied by the ex

species.

Equilibrium among aqueous and exchange species requires that all mass-action equations for the ex

species are satisfied. The association reaction for the exchange species is , whe

is the exchange master species for the default database. The use of equivalent fractions for activities and th

for the chemical reaction is known as the Gaines-Thomas convention (Gaines and Thomas, 1953) and is

µ∂
∂ lnγ i ln 10( ) Azi

2 1

2 µ µ 1+( )2
------------------------------------ 0.3– 

 –=

µ∂
∂ lnγ i ln 10( )

Azi
2

2 µ Bai
o µ 1+( )2

---------------------------------------------- bi+
 
 
 

–=

aie

γ i e
nie

ie

aie
γ i e

be ie, nie

Te
-----------------= be ie,

ie Te
Te

CaX2 Ca
2+

2X
-

+ CaX2= X
-

12 User’s Guide to PHREEQC (Version 2)



fficient

i-

fficients.

ethod.

e log

cies are

are

tions,

se. Two

Morel

erms
convention used in the databasesphreeqc.dat andwateq4f.dat, which are distributed withPHREEQC. [It is also

possible to use the Gapon convention inPHREEQC, which also uses equivalent fraction, but writes the exchange

reaction as . See Appelo and Postma (1993) for more discussion.] The logK for calcium

exchange in the default database file is 0.8, which results in the following mass-action equation:

. (9)

In general, mass-action equations can be written as

, (10)

wherem varies over all master species, including exchange master species,  is the stoichiometric coe

of master species,m, in the association half-reaction for exchange speciesie, and  is a half-reaction selectivity

constant. The values of  may be positive or negative. ForPHREEQC, terms on the right-hand side of an assoc

ation reaction are assigned negative coefficients and terms on the left-hand side are assigned positive coe

For an exchange species, the equation for the total moles of speciesie is

. (11)

The natural log of the activity of the master species of the exchanger is a master unknown in the numerical m

The total derivative of the moles of speciesie with respect to the master unknowns is

. (12)

For data input toPHREEQC, the chemical equation for the mole-balance and mass-action expressions, th

K and its temperature dependence, and, optionally, the activity-coefficient expression for each exchange spe

defined through theEXCHANGE_SPECIES data block. Exchange master species are defined with the

EXCHANGE_MASTER_SPECIES data block. The number of exchange sites and exchanger composition 

defined with theEXCHANGE  data block (see “Description of Data Input”).

Surface Species

Surface-complexation processes are included in the model through heterogeneous mass-action equa

mole-balance equations for surface sites, and charge-potential relations for each surface.PHREEQCallows multiple

surfaces and surface-site types, termed a “surface assemblage”, to exist in equilibrium with the aqueous pha

formulations of the mass-action equations for surface species are available inPHREEQC: (1) one that includes

electrostatic potential terms and (2) another that excludes all electrostatic potential terms. If the Dzombak and

(1990) model, which includes electrostatic potential terms, is used, additional equations and mass-action t

become operational because of surface charge and surface electrostatic potential.

0.5Ca
2+

X
-

+ Ca0.5X=

10
0.8 aCaX2

a
Ca2+aX-

2
---------------------=

Kie
aie

am

c– m i, e

m

M
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cm i, e
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cm i, e
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∏
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=
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The two principle differences between the formulation of exchange reactions and surface reactions a

exchange reactions are formulated as half-reactions, which causes the master species not to appear in a

mole-balance equations, and the exchange species are expected to be neutral. Surface reactions are no

half-reactions, so the master species is a physically real species and appears in mole-balance equations, an

species may be anionic, cationic, or neutral.

The basic theory for surface-complexation reactions including electrostatic potentials is presented in

Dzombak and Morel (1990). The theory assumes that the number of active sites,Ts (eq), the specific area,As

(m2/g), and the mass,Ss (g), of the surface are known. The two additional master unknowns are (1) the qua

, whereF is the Faraday constant (96493.5 J V-1 eq-1),  is the potential at sur-

faces (volts),R is the gas constant (8.3147 J mol-1 K-1), andT is temperature (Kelvin) and (2) the natural log of

the activity of the master surface species. Note that the quantity  is defined with a 2 in the denomina

the term on the right-hand side. This is a different master unknown than that used in Dzombak and Morel (

but produces the same results as their model because all equations are written to be consistent with this 

unknown.

The activity of a surface species is assumed to be equal to the mole fraction of a given surface-site ty

is occupied. In other words, a surface species is in the standard state (has activity of 1) when it completely

a given kind of surface site. This convention differs from Dzombak and Morel (1990) who assumed that a

of a surface species (conceptually in the solid phase) is numerically equal to molarity (concentration in solu

If only monodentate complexes are considered (as is done by Dzombak and Morel, 1990), terms cancel i

mass-action equation and identical numerical results are obtained irrespective of the convention for standa

However, a notable difference in surface site concentration exists when the molarity convention is used fo

multidentate complexes (bidentate, tridentate, and others, cf. Appelo and Postma, 1999). If a vessel cont

solution in equilibrium with a surface containing multidentate species, and more of exactly the same solut

added, the composition of solution and surface would change with the molarity convention. The molarity

convention is clearly not correct in this case.

“Hfo” (Hydrousferricoxide) is used in the default database files with “_w”, which indicates a low affin

or weak site and “_s”, which indicates a high affinity or strong site. “Hfo_wOH” is used to represent a neutral

surface species at a weak site and the association reaction for the formation of a negatively charged weak s

an association reaction in the sense that the defined species is on the right hand side of the equation) can b

as

. (13)

The mass-action expression, which includes the electrostatic potential term, is

, (14)

where  is the intrinsic equilibrium constant for the reaction, and  is a factor that accounts f

work involved in moving a charged species (H+) away from a charged surface. In general, the mass-action eq

tion for surface species  is

lnaΨs
ln e

FΨs

2RT
-----------

 
 
 
  FΨs

2RT
-----------= = Ψs

lnaΨs

Hfo_wOH Hfo_wO
-

H
+

+→

K
Hfo_wO-
int

a
Hfo_wO-aH+

aHfo_wOH
--------------------------------e

FΨs

RT
----------–

=

K
Hfo_wO-
int

e

FΨs

RT
----------–

isk
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where , is the intrinsic equilibrium constant;  is theith surface species for surface-site typek (weak or

strong in Dzombak and Morell, 1990) in surfaces; m varies over all master species,M, including surface master

species;  is the stoichiometric coefficient of master species,m, in the association reaction for surface specie

, and  is the net change in surface charge due to the formation of the surface species. The value

 may be positive or negative. ForPHREEQC, terms on the right-hand side of an association reaction are

assigned negative coefficients and terms on the left-hand side are assigned positive coefficients.

For a surface species, the equation for the total moles of species  is

, (16)

where  is the total number of a type of surface site, and  is the number of surface sites bounded to

cies. The total derivative of the moles of species  with respect to the master unknowns is

. (17)

The second formulation of mass-action equations for surface species excludes the electrostatic potent

in the mass-action expression (-no_edl identifier in theSURFACE data block). The equation for the moles of a

surface species is the same as equation 16, except the factor involving  does not appear. Likewise, the

derivative of the moles is the same as equation 17, except the final term is absent.

For data input toPHREEQC, the chemical equation for the mole-balance and mass-action expressions a

log K and its temperature dependence of surface species are defined through theSURFACE_SPECIESdata block.

Surface master species or types of surface sites are defined with theSURFACE_MASTER_SPECIESdata block.

The identity of the surfaces and the number of equivalents of each site type, the composition of the surface

specific surface area, and the mass of the surface are defined with theSURFACE data block (see “Description of

Data Input”).

Gas-Phase Components

Equilibrium between a multicomponent gas phase and the aqueous phase is modeled with heteroge

mass-action equations and an equation for total pressure (fixed-pressure gas phase only). Only one gas p

exist in equilibrium with the aqueous phase, but the gas phase may contain multiple components. All gas

components are assumed to behave ideally and the gas phase is assumed to be an ideal mixture of gas co

If a gas phase is specified to have a fixed volume, then the pressure in the gas volume will vary with re

extent, but each gas component will always be present in the gas phase. For a fixed-volume gas phase, no a

Ki sk( )

int
ai sk( )

am

cm i sk( ),–

m

M

∏ 
 
 

e

FΨs

RT
----------∆zi sk( )

=

Ki sk( )

int
i sk( )

cm i, s

i sk( ) ∆zi sk( )

cm i, sk( )

i sk( )

ni sk( )
ai sk( )

Tsk

bi sk( )

---------- Ki sk( )
Tsk

e

FΨs

RT
----------∆zi sk( )

– 
 

am

cm i, sk( )

m

M

∏= =

Ki sk( )

Tsk

bi sk( )

----------aΨs

2∆zi sk( )
–

am

cm i, sk( )

m

M

∏=

Tsk
bi sk( )

i sk( )

dni sk( )
ni sk( )

cm i, sk( )
dlnam

m

M

∑ 2∆zi sk( )
dlnaΨs
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aΨs
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master unknowns are needed, and the moles of a component in the gas phase can be calculated from the

of the aqueous master species.

If a gas phase is specified to have a fixed pressure, the gas phase is a fixed-pressure bubble that wil

volume with reaction extent. If the sum of the partial pressures of the component gases is less than the s

total pressure, the fixed-pressure gas phase will not exist and none of the gas components will be present in

phase. For a fixed-pressure gas phase, one additional master unknown is included in the equations, whic

total moles of gas components in the gas phase,Ngas.

By the assumption of ideality, the fugacity (activity) of a gas component is equal to its partial pressu

PHREEQCuses dissolution equations, in the sense that the gas component is assumed to be on the left-hand

the chemical reaction. For carbon dioxide, the dissolution reaction may be written as

. (18)

The Henry’s law constant relates the partial pressure of the gas component (numerically equal to fugacity

ideal gases) to the activity of aqueous species. For carbon dioxide, the Henry’s law constant is 10-1.468[following

the ideal gas assumption, units are atmospheres (atm)], and the following mass-action equation applies at

rium:

, (19)

where  is the partial pressure (atm) calculated using activities in the aqueous phase. In general, the

pressure of a gas component may be written in terms of aqueous phase activities as

, (20)

where  is the partial pressure of gas componentg, calculated using activities in the aqueous phase;  is th

Henry’s law constant for the gas component; and  is the stoichiometric coefficient of aqueous master

cies,m, in the dissolution equation. The values of  may be positive or negative. ForPHREEQC, terms on the

left-hand side of a dissolution reaction are assigned negative coefficients and terms on the right-hand sid

assigned positive coefficients.

For a fixed-volume gas phase, the total volume of the gas phase is specified to beVtotal, but the pressure of

the gas phase is variable. At equilibrium, the number of moles of a gas component in the gas  is calcul

. (21)

The total derivative of the moles of a gas component in the gas phase is

. (22)

For a fixed-pressure gas phase, the total pressure is specified asPtotal, but the volume of the gas phase is

variable. At equilibrium, the number of moles of a gas component in the gas phase is equal to the fraction

total pressure for the gas times the total moles of gas in the gas phase:

CO2 g( ) CO2 aq( )=

PCO2
10

1.468
aCO2 aq( )

=

PCO2

Pg
1

Kg
------- am

cm g,

m

Maq

∏=

Pg Kg
cm g,
cm g,

ng

ng

VtotalPg

RT
---------------------

Vtotal

RTKg
-------------- am

cm g,

m

Maq

∑= =

dng

Vtotal

RT
-------------- ngc

m g, dlnam
m

Maq

∑=
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The total derivative of the moles of a gas component in the gas phase is

. (24)

For data input toPHREEQC, the mass-action equations, Henry’s law constant, and temperature dependen

the constant are defined with thePHASESdata block. The type of gas phase (fixed-volume or fixed-pressure),

components to include in gas-phase calculations, and initial gas-phase composition are defined with the

GAS_PHASE data block (see “Description of Data Input”).

Equations for the Newton-Raphson Method

A series of functions, denoted by , are used to describe heterogeneous equilibrium. These equation

derived primarily by substituting the equations for the moles of species (derived from mass-action equations

previous section) into mole- and charge-balance equations. When equilibrium is satisfied, all of the functio

relevant to a specific equilibrium calculation are equal to zero. The zeros of the functions are found by the

Newton-Raphson method, by which each function is differentiated with respect to each master unknown to fo

Jacobian matrix. A set of linear equations is formed from the Jacobian matrix that can be solved to approx

solution to the nonlinear equations. By iteratively solving successive sets of linear equations, a solution to 

nonlinear equations can be found. Each of the functions that is used in the numerical method is presented

section along with the total derivative with respect to the master unknowns that is used to form the Jacobian

Activity of Water

The activity of water is calculated from an approximation that is based on Raoult’s law (Garrels and C

1965, p. 65-66):

. (25)

The function  is defined as

, (26)

and the total derivative of this function is

. (27)

The master unknown is the natural log of the activity of water .

ng Ngas

Pg

Ptotal
--------------

Ngas

PtotalKg

--------------------- am
cm g,

m

Maq

∏= =

dng

Pg

Ptotal
--------------dNgas ngcm g, dlnam

m

Maq

∑+=

f

f

aH2O
1 0.017

ni

Waq
----------

i

Naq

∑–=

f H2O

f H2O
Waq aH2O

1–( ) 0.017 ni
i

Naq

∑+=

d f H2O
WaqaH2O

dln aH2O
( ) aH2O

1–( )Waqdln Waq( ) 0.017 dni
i

Naq

∑+ +=

aH2O
ln
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Ionic Strength

The ionic strength of the aqueous solution is a master unknown and is defined as

. (28)

The function  is defined as

, (29)

and the total derivative of this function is

. (30)

Equilibrium with a Fixed-Volume Multicomponent Gas Phase

For a fixed-volume gas phase, the moles of each gas component can be calculated from the activitie

aqueous master species, and the numerical model treats the gas phase components in the same way tha

aqueous species. The terms for the moles of each gas components,ng, appear in the mole-balance equations fo

elements and the terms appear in the Jacobian matrix for the mole-balance equations. No additional e

labeledf is required to calculate equilibrium with the fixed-volume gas phase.

For data input toPHREEQC, the mass-action equations, Henry’s law constant, and temperature depende

the constant are defined with thePHASESdata block. The type of gas phase (fixed-volume or fixed-pressure),

components to include in gas-phase calculations, and initial gas-phase composition are defined with the

GAS_PHASE data block (see “Description of Data Input”).

Equilibrium with a Fixed-Pressure Multicomponent Gas Phase

For a fixed-volume gas phase, the number of moles of each gas component is calculated from the ac

of the aqueous master species and the total moles of gas components in the gas phase,Ng. The terms for the moles

of each gas components,ng, appear in the mole-balance equations for elements and the terms  appear 

Jacobian matrix for the mole-balance equations. Equilibrium between a fixed-pressure multicomponent ga

and the aqueous phase requires one new equation--the sum of the partial pressures of the component gase

to the total pressure,Ptotal. The function  is defined as

, (31)

where  is the total number of gas components in the gas phase.

The total derivative of with respect to the master unknowns, with the convention that positivedNgas

are increases in solution concentration, is

µ 1
2
--- zi

2 ni

Waq
----------

i

Naq
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f µ

f µ Waqµ 1
2
--- zi

2
ni

i

Naq

∑–=

d f µ µWaqdln Waq( ) Waqdµ 1
2
--- zi

2
dni

i

Naq

∑–+=

dng

dng

f Ptotal

f Ptotal
Ptotal Pg

g

Ng

∑–=

Ng

f Ptotal
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For data input toPHREEQC, the mass-action equations, Henry’s law constant, and temperature dependen

the constant are defined with thePHASESdata block. The type of gas phase (fixed-volume or fixed-pressure),

components to include in gas-phase calculations, and initial gas-phase composition are defined with the

GAS_PHASE data block (see “Description of Data Input”).

Equilibrium with Pure Phases

Equilibrium between the aqueous phase and pure phases, including gases with fixed partial pressure

included in the model through heterogeneous mass-action equations.PHREEQCallows multiple pure phases, termed

a pure-phase assemblage, to exist in equilibrium with the aqueous phase, subject to the limitations of the G

Phase Rule. The activity of a pure phase is assumed to be identically 1.0. The additional master unknown 

pure phase is the moles of the pure phase that is present in the system,np, wherep refers to thepth phase. Terms

representing the changes in the moles of each pure phase occur in the mole-balance equations for elements.PHREEQC

also allows a calculation where equilibrium with a pure phase is produced by adding or removing a specified re

(alternative formula andalternative phase in EQUILIBRIUM_PHASES  data block); the mole transfer of the

reactant that is necessary to produce equilibrium with the pure phase is calculated. In this type of calculati

terms in the mole-balance equations are derived from the stoichiometry of the reactant rather than the stoich

of the pure phase, and the unknown is the number of moles of reactant that enter or leave solution.

The new function corresponding to each of the new unknowns is a mass-action expression for each pure

PHREEQCuses dissolution reactions, in the sense that the pure phase is on the left-hand side of the chemical e

For calcite, the dissolution reaction may be written as

, (33)

and, using logK of 10-8.48 and activity of the pure solid of 1.0, the resulting mass-action expression is

. (34)

In general, pure-phase equilibria can be represented with the following equation:

, (35)

where  is the stoichiometric coefficient of master speciesm in the dissolution reaction. The values of

may be positive or negative. ForPHREEQC, terms on the left-hand side of a dissolution reaction are assigned n

tive coefficients and terms on the right-hand side are assigned positive coefficients. The saturation index fo

mineral,SIp, is defined to be

. (36)

The function used for phase equilibrium in the numerical method is

d f Ptotal
cm g, Pgdlnam

m

Maq

∑
g

Ng

∑–=

CaCO3 Ca
2+

CO3
2-

+=

Kcalcite 10
8.48–

a
Ca2+aCO3

2-= =

K p am
cm p,

m

Maq

∏=

cm p, cm p,

SIp am
cm p,

m

Maq

∏log=
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where is the target saturation index for the phase, and converts base-10 log to natural log

target saturation index is specified by the user; a positive, zero, or negative value specifies supersaturatio

librium, or undersaturation for the mineral with respect to the solution. For fixed-partial-pressure gas comp

 is equivalent to the log of the partial pressure of the gas component. The total derivative with re

to the master unknowns is

. (38)

For data input toPHREEQC, the mass-action equations, equilibrium constant, and temperature dependen

the constant for a pure phase are defined with thePHASES data block. Initial composition of a pure-phase

assemblage and target saturation indices are defined with theEQUILIBRIUM_PHASES  data block.

Equilibrium with Solid Solutions

Modeling of ideal, multicomponent or nonideal, binary solid solutions is based on the work of Glynn (G

and Reardon, 1990; Glynn and others, 1990; Glynn, 1991; Glynn and Parkhurst, 1992). Equilibrium betwe

aqueous phase and solid solutions is included in the model through heterogeneous mass-action equations.PHREEQC

allows multiple solid solutions, termed a solid-solution assemblage, to exist in equilibrium with the aqueous p

subject to the limitations of the Gibbs’ Phase Rule. Modeling of nonideal solid solutions is limited to

two-component (binary) solid solutions; ideal solid solutions may have two or more components. The add

master unknowns for solid solutions are the moles of each component in each solid solution , wheressrefers

to solid solutionss. Terms representing the changes in the moles of each component occur in the Jacobian

of the mole-balance equations for elements.

Unlike pure phases, the activity of a component in a solid solution is not identically 1.0. The activity 

component is defined to be , where is the mole fraction of componentp in the solid solution

ss, and  is the activity coefficient. The mole fraction of a component in a solid solution is defined as

, where  is the number of components in solid solutionss. For ideal solid solutions, the

activity coefficient is 1.0; for nonideal, binary solid solutions, the activity coefficients for the components a

defined with the Guggenheim expressions:

 and (39)

, (40)

where  and  are the activity coefficients of components 1 and 2, and  and  are nondimensional

Guggenheim parameters. The nondimensional parameters are calculated from dimensional parameters f

f p lnK p ln 10( )[ ]+ SIp target,( ) cm p, ln am( )
m

Maq

∑–=

SIp target, ln 10( )

SIp target,

d f p cm p, dlnam
m

Maq

∑–=

npss

apss
λpss

xpss
= xpss

λpss

xpss

npss

npss

pss 1=

Nss

∑
-----------------------= Nss

λ1 a0 a1 4x1 1–( )–( )x2
2( )exp=

λ2 a0 a1+ 4x2 1–( )( )x1
2( )exp=

λ1 λ2 a0 a1
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excess free energy  and  (kJ/mol) by the equations:  and . The parameters  and

for the excess free energy may be defined directly or by a variety of means including the mole fractions of 

nent 2 delimiting the miscibility gap, the mole fractions of component 2 delimiting the spinodal gap, the mole

tion of component 2 at the critical point and the critical temperature, Thompson and Waldbaum parameters

Margules parameters, mole fraction of component 2 and the log of the total solubility product of an alyotrop

point, solid-phase activity coefficients for trace concentrations of component 1 and component 2, or two dis

tion coefficients for component 2 (Glynn, 1991).

 The new function corresponding to each of the new unknowns is a mass-action expression for each

component in each solid solution.PHREEQCuses dissolution reactions, in the sense that the solid-solution compo

is on the left-hand side of the chemical equation. For aragonite in an aragonite-strontianite solid solution, t

dissolution reaction may be written as

, (41)

and, using logK of 10-8.34 and activity coefficient for the solid, the resulting mass-action expression is

. (42)

In general, solid-solution phase equilibria can be represented with the following equation for each compon

, (43)

where is the equilibrium constant of componentp in pure form, and is the stoichiometric coefficient o

master speciesm in the dissolution reaction for componentp in solid solutionss. The values of may be pos-

itive or negative. ForPHREEQC, terms on the left-hand side of a phase dissolution reaction are assigned nega

coefficients and terms on the right-hand side are assigned positive coefficients. The solubility quotient for a c

nent of the solid solution is defined to be

, (44)

where  is equal to 1 and  is equal to 0 at equilibrium. The functions used in the numerical metho

each component of a nonideal, binary solid solution are

 and (45)

. (46)
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RT
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∑
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 EQUATIONS FOR SPECIATION AND FORWARD MODELING        21



ce of

umber of

oles

cupied

tion is
The total derivative with respect to the master unknowns is

(47)

and

. (48)

The function used in the numerical method for each component of an ideal solid solution is

, (49)

where  and  ranges over all the components in solid solutionss. The total derivative with

respect to the master unknowns is

. (50)

For data input toPHREEQC, the mass-action equations, equilibrium constant, and temperature dependen

the constant for each pure phase are defined with thePHASESdata block. Initial composition of a solid-solution

assemblage and Guggenheim parameters for nonideal solid solutions are defined with theSOLID_SOLUTIONS

data block (see “Description of Data Input”).

Mole Balance for Surface Sites

Mole balance for a surface site is a special case of the general mole-balance equation. The surface

assemblage is a set of one or more surfaces, each of which may have one or more site types. The total n

moles of a surface site type is specified by input to be one of the following: (1) fixed, (2) proportional to the m

of a pure phase, or (3) proportional to the moles of a kinetic reactant. The sum of the moles of surface sites oc

by the surface species of a site type must equal the total moles of that surface site type. The following func

derived from the mole-balance relation for a surface site type  of surface :
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where the value of the function is zero when mole balance is achieved, is the moles of the surface sit

 is the number of surface species for the site type, and  is the number of surface sites occupied 

surface species . The total derivative of  is

. (52)

If the total number of sites is proportional to the moles of a pure phase, then , where

is the moles of surface sites per mole of phasep. If the phase dissolves, then  is positive and the number o

surface sites decreases. If the total number of sites is proportional to the moles of a kinetic reactant,

the total derivative equation. The change in the number of sites is included as part of the reaction that is inte

with the rate equations and no term is included in the Jacobian matrix. As the kinetic reaction increases or de

the moles of reactant, the number of surface sites is adjusted proportionately. If the number of surface sites i

.

For data input toPHREEQC, the number of moles of each type of surface site is defined with theSURFACE

data block and may be a fixed quantity or it may be related to the moles of a pure phase or a kinetic reactant.

site types are defined with theSURFACE_MASTER_SPECIES data block and surface species are defined wi

theSURFACE_SPECIES data block (see “Description of Data Input”).

Mole Balance for Exchange Sites

Mole balance for an exchange site is a special case of the general mole-balance equation. The total nu

moles of an exchange site is specified by input to be one of the following: (1) fixed, (2) proportional to the mo

a pure phase, or (3) proportional to the moles of a kinetic reactant. The sum of the moles of sites occupied

exchange species must equal the total moles of the exchange site. The following function is derived from t

mole-balance relation for an exchange site:

, (53)

where the value of the functionfe is zero when mole balance is achieved,Te is the total moles of exchange sites fo

exchanger , and is the number of exchange sites occupied by the exchange species. The total derivafe
is

. (54)

If the total number of sites is proportional to the moles of a pure phase, then , where

is the moles of exchange sites per mole of phasep. If the phase dissolves, then  is positive and the number

exchange sites decreases. If the total number of sites is proportional to the moles of a kinetic reactant,
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the total derivative equation. The change in the number of sites is included as part of the reaction that is inte

with the rate equations and no term is included in the Jacobian matrix. As the kinetic reaction increases or de

the moles of the reactant, the number of exchange sites is adjusted proportionately. If the number of exchan

is fixed, .

For data input toPHREEQC, the moles of exchange sites are defined in theEXCHANGE data block and may

be a fixed quantity or it may be related to the moles of a pure phase or a kinetic reactant. Exchanger sites are

with theEXCHANGE_MASTER_SPECIES data block and exchange species are defined with the

EXCHANGE_SPECIES data block (see “Description of Data Input”).

Mole Balance for Alkalinity

The mole-balance equation for alkalinity is used only in speciation calculations and in inverse mode

Mole balance for alkalinity is a special case of the general mole-balance equation where the coefficients are

by the alkalinity contribution of each aqueous species. Alkalinity is defined as an element inPHREEQCand a master

species is associated with this element (seeSOLUTION_MASTER_SPECIES keyword in “Description of Data

Input”). In the default databases forPHREEQC, the master species for alkalinity is . The master unknown f

alkalinity is , or for the default databases, .

The total number of equivalents of alkalinity is specified by input to the model. The sum of the alkali

contribution of each aqueous species must equal the total number of equivalents of alkalinity. The followin

function is derived from the alkalinity-balance equation:

, (55)

where the value of the functionfAlk is zero when mole balance is achieved,TAlk is the number of equivalents of

alkalinity in solution, and  is the alkalinity contribution of the aqueous speciesi (eq/mol). The total deriva-

tive of fAlk is

. (56)

The value of  must be positive, provided a carbonate species is the master species for alkalinit

Conceptually, a measured alkalinity differs from the alkalinity calculated byPHREEQC. In the default database files

for PHREEQCthe values of have been chosen such that the reference state ( ) for each elem

element valence state is the predominant species at a pH of 4.5. It is assumed that all of the element or e

valence state is converted to this predominant species in an alkalinity titration. However, significant concent

of aqueous species that are not in the reference state (that is species that have nonzero alkalinity contributio

exist at the endpoint of a titration, and the extent to which this occurs causes the alkalinity calculated byPHREEQC

to be a different quantity than the measured alkalinity. Hydroxide complexes of iron and aluminum are the

common examples of species that may not be converted to the defined reference state. Thus, the alkalini

solution as calculated byPHREEQC, though it will be numerically equal to the measured alkalinity, is an

approximation because of the assumption that a titration totally converts elements and element valence s

∆Te 0=

CO3
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lnaAlk lna
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f Alk TAlk bAlk i, ni
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bAlk i,
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their reference state. In most solutions, where the alkalinity is derived predominantly from carbonate speci

approximation is valid.

For data input toPHREEQC, the alkalinity of each species is calculated from the association reaction for 

species, which is defined in theSOLUTION_SPECIES data block, and the alkalinity contributions of the maste

species, which are defined with theSOLUTION_MASTER_SPECIES data block. Total alkalinity is part of the

solution composition defined with theSOLUTION orSOLUTION_SPREAD data block (see “Description of Data

Input”).

Mole Balance for Elements

The total moles of an element in the system are the sum of the moles initially present in the pure-pha

solid-solution assemblages, aqueous phase, exchange assemblage, surface assemblage, gas phase, and d

of the surfaces. The following function is the general mole-balance equation:

, (57)

where the value of the functionfm is zero when mole-balance is achieved,Tm is the total moles of the element in the

system,Np is the number of phases in the pure-phase assemblage,SS is the number of solid solutions in the

solid-solution assemblage,Nssis the number of components in solid solutionss, Naq is the number of aqueous spe

cies,E is the number of exchangers in the exchange assemblage,Ne is the number of exchange species for

exchange sitee, S is the number of surfaces in the surface assemblage,  is the number of surface types fo

faces,  is the number of surface species for surface type , andNg is the number of gas-phase components

The moles of each entity in the system are represented bynp for phases in the pure-phase assemblage,  for

components in a solid solution, ni for aqueous species,  for the exchange species of exchange sitee,  for

surface species for surface site type ,ng for the gas components, and for aqueous species in the diffuse la

of surfaces. The moles of elementmper mole of each entity are represented bybm, with an additional subscript to

define the relevant entity; is usually, but not always, equal to (the coefficient of the master species fom in

the mass-action equation).

To avoid solving for small differences between large numbers, the quantity in parenthesis in equation 57

explicitly included in the solution algorithm and the value of  is never actually calculated. Instead the qu

 is used in the function . Initially,  is calculated from the tota

moles of in the aqueous phase, the exchange assemblage, the surface assemblage, the gas phase, and

diffuse layers:
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During the iterative solution to the equations,  is updated by the mole transfers of the pure phases an

ponents of the solid solutions:

, (59)

where refers to the iteration number. It is possible for to be negative in intermediate iterations, but it

be positive when equilibrium is attained.

The total derivative of the functionfm is

. (60)

For data input toPHREEQC, total moles of elements are initially defined for an aqueous phase with the

SOLUTION  or SOLUTION_SPREAD data block, for an exchange assemblage with theEXCHANGE  data

block, for a surface assemblage with theSURFACE data block, for the gas phase with aGAS_PHASEdata block.

The moles of each phase in a pure-phase assemblage are defined with theEQUILIBRIUM_PHASES data block.

The moles of each component in each solid solution in a solid-solution assemblage are defined with the

SOLID_SOLUTIONS data block. Total moles of elements may also be modified by batch-reaction and tran

calculations (see “Description of Data Input”).

Aqueous Charge Balance

The charge-balance equation sums the equivalents of aqueous cations and anions and, in some ca

charge imbalances developed on surfaces and exchangers. When specified, a charge-balance equation 

initial solution calculations to adjust the pH or the activity of a master species (and consequently the total

concentration of an element or element valence state) to produce electroneutrality in the solution. The

charge-balance equation is necessary to calculate pH in batch reactions and transport simulations.

In real solutions, the sum of the equivalents of anions and cations must be zero. However, analytica

and unanalyzed constituents in chemical analyses generally cause electrical imbalances to be calculated

solutions. If a charge imbalance is calculated for an initial solution, the pH is adjusted in subsequent batch re

or transport simulations to maintain the same charge imbalance. If mixing is performed, the charge imbalan

the batch-reaction step is the sum of the charge imbalances of each solution weighted by its mixing facto

surface is used in a simulation and the explicit diffuse-layer calculation is not specified, then the formation

charged surface species will result in a surface charge imbalance. Similarly, if exchange species are not ele
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neutral (all exchange species in the default databases are electrically neutral), the exchanger will accumul

charge. The charge imbalances of surfaces and exchangers are included in the general charge-balance eq

The charge imbalance for a solution is calculated in each initial solution calculation, in each batch-rea

step, and for each cell during each time step of transport simulations with the equation:

, (61)

whereq identifies the aqueous phase,  is the charge imbalance for aqueous phaseq, andzi is the charge on

aqueous speciesi. If charged surfaces or exchangers are not present, the charge imbalance for a solution at t

of a batch-reaction or transport simulation will be the same as at the beginning of the simulation.

The charge imbalance on a surface is calculated in the initial surface-composition calculation, in each

batch-reaction step, and for each cell during each time step of transport simulations with the equation:

, (62)

where is the charge imbalance for the surface, is the charge on the surface speciesi of surface type of

surfaces, and the final term in the equation represents the charge accumulated in the diffuse layer. The final

used only if the diffuse-layer composition is explicitly included in the calculation (-diffuse_layer in theSUR-

FACE data block). When the diffuse-layer composition is calculated explicitly, it is required that all solutions

charge balanced, and  will always be equal to zero.

Normally, exchange species have no net charge, but for generality, this is not required. However, the a

of exchange species (the equivalent fraction) is not well defined if the sum of the charged species is not equa

total number of equivalents of exchange sites (exchange capacity). If charged exchange species exist, then th

imbalance on an exchanger is calculated in the initial exchange-composition calculation, in each batch-reacti

and for each cell during each time step of transport simulations with the equation:

, (63)

where is the charge imbalance for the exchanger, and is the charge on the exchange speciesi of exchanger

e.

The charge imbalance for the system is defined at the beginning of each batch-reaction step and for e

at the beginning of each time step in transport simulations to be:

, (64)

where  is the charge imbalance for the system,Q is the number of aqueous phases that are mixed in the

batch-reaction step or in the cell for a transport step, is the mixing fraction for aqueous phaseq, Sis the number

of surfaces, andE is the number of exchangers.

The charge-balance function is
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where is zero when charge balance has been achieved. If the diffuse-layer composition is explicitly calc

a separate charge-balance equation is included for each surface and the sum of the terms in the parenthes

zero when surface charge balance is achieved. If the diffuse-layer composition is not calculated, the seco

inside the parentheses is zero. The total derivative of  is

, (66)

where the triple summation for surfaces is present only if the diffuse-layer composition is not explicitly cal

lated.

For data input toPHREEQC, charge imbalance is defined by data input forSOLUTION  or

SOLUTION_SPREAD, EXCHANGE , andSURFACE data blocks combined with speciation, initial

exchange-composition, and initial surface-composition calculations. The charge on a species is defined in

balanced chemical reaction that defines the species inSOLUTION_SPECIES, EXCHANGE_SPECIES, or

SURFACE_SPECIES data blocks (see “Description of Data Input”).

Surface Charge-Potential Equation with No Explicit Calculation of the Diffuse-Layer Composition

By default,PHREEQCuses the approach described by Dzombak and Morel (1990) to relate the charge d

on the surface, , with the potential at the surface, . The surface-charge density is the amount of cha

area of surface material, which can be calculated from the distribution of surface species:

, (67)

where  is the charge density for surfaces in coulombs per square meter (C/m2), F is the Faraday constant in

coulombs per mole (96,493.5 C/mol),Asurf is the surface area of the material (m2). The surface area is calculated

by one of the following formulas: (1) , whereAs is the specific area of the surface material (m2/g),

and Ss is the mass of surface material (g), or (2) , whereAr is the surface area per mole of a pure

phase or kinetic reactant (m2/mol), and nr is the moles of the pure phase or reactant. At 25oC, the surface-charge

density is related to the electrical potential at the surface by:

, (68)

where is the dielectric constant of water (78.5, dimensionless), is the permittivity of free space (8.854x-12

CV-1m-1 or C2/m-J), is the ionic charge of a symmetric electrolyte,R is the gas constant (8.314 J mol-1 K-1), T

is temperature (K), is the ionic strength, andF is the Faraday constant (J V-1 eq-1 or C/mol), is the potential

at the surface in volts. At 25oC, . The charge of the electrolyte ions is assumed to b

The charge-potential function is
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and the total derivative of this function is

. (70)

For data input toPHREEQC, calculation without an explicit diffuse layer is the default. Specific surface ar

( or ) and mass of surface ( ) are defined in theSURFACEdata block. The moles of surface sites are define

(1) in theSURFACE data block if the number of sites is fixed, (2) by a proportionality factor in theSURFACE data

block and the moles of a phase inEQUILIBRIUM_PHASES  data block, or (3) by a proportionality factor in the

SURFACE data block and the moles of a kinetic reactant inKINETICS data block. The charge on a surface speci

is specified in the balanced chemical reaction that defines the species in theSURFACE_SPECIESdata block (see

“Description of Data Input”).

Surface Charge-Balance Equation with Explicit Calculation of the Diffuse-Layer Composition

As an alternative to the previous model for the surface charge-potential relation,PHREEQCoptionally will use

the approach developed by Borkovec and Westall (1983). Their development solves the Poisson-Boltzman

equation to determine surface excesses of ions in the diffuse layer at the oxide-electrolyte interface. Through

derivation that follows, it is assumed that a volume of one liter (L) contains 1 kg of water.

The surface excess is:

, (71)

where  is the surface excess in mol m-2 of aqueous speciesi on surfaces,  is the location of the outer

Helmholtz plane, is concentration as a function of distance from the surface in mol m-3, and is the con-

centration in the bulk solution. The surface excess is related to concentration in the reference state of 1.0 k

water by

, (72)

where is the surface excess of aqueous speciesi in moles per kilogram water (mol/kgw). This surface-exces

concentration can be related to the concentration in the bulk solution by
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where  is a function of the potential at the surface and the concentrations and charges of all ions in th

solution:

, (74)

where ,  is the value ofX at the outer Helmholtz plane,Asurf is the surface area (m2),
sign( ) is +1 or -1 depending on the sign of the term in parentheses,i is the aqueous species for which the

surface excess is being calculated,zi is the charge on aqueous speciesi, l ranges over all aqueous species,ml is the

molality andzl is the charge of aqueous speciesl, and . The value of  at 25oC is

0.02931 (L/mol)1/2 C m-2. The relation between the unknown (X) used by Borkovec and Westall (1983) and the

master unknown used byPHREEQC is .

The development of Borkovec and Westall (1983) calculates only the total excess concentration in the

layer of each aqueous species. A problem arises in batch-reaction and transport modeling when a solutio

removed from the surface, for example, in an advection simulation when the water in one cell advects into th

cell. In this case, the total moles that remain with the surface need to be known. InPHREEQC, an arbitrary

assumption is made that the diffuse layer is a specified thickness and that all of the surface excess reside

diffuse layer. The total moles of an aqueous species in the diffuse layer are then the sum of the contribution

the surface excess plus the bulk solution in the diffuse layer:

, (75)

where refers to the moles of aqueous speciesi that are present in the diffuse layer due to the contributio

from the bulk solution, refers to the surface excess, is the mass of water in the system excl

the diffuse layer,  is the mass of water in the diffuse layer of surfaces. It is assumed that the amount of wate

in the aqueous phase is much greater than in the diffuse layers, such that , (In version 1,

). The mass of water in the diffuse layer is calculated from the thickness of the diffu

 layer and the surface area, assuming 1 L contains 1 kg water:

, (76)

where  is the thickness of the diffuse layer in meters. If the moles of surface sites are related to the mol

pure phase or kinetic reactant, then , otherwise  is constant and calculated from the sp

area and the mass of the surface that are specified on input. According to electrostatic theory, the thicknes

diffuse layer should be greater at low ionic strength and smaller at high ionic strength. The default value u

PHREEQC for the thickness of the diffuse layer is 1x10-8 m, which is approximately the thickness calculated by

Debye theory for an ionic strength of 0.001 molal. For ionic strength 0.00001, the Debye length of the diff

layer is calculated to be 1x10-7 m. The assumption that the amount of water in the diffuse layer is small will 
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invalid if the surface area is sufficiently large; for a thickness of 1x10-7 m, a surface area of 1000 m2 results in a dif-

fuse-layer volume of 0.1 L, which is a significant portion of 1 L of bulk solution.

The total derivative of the moles of an aqueous species in the diffuse layer is

, (77)

where the second term is the partial derivative with respect to the master unknown for the potential at the s

, and the last term is present only if the number of surface sites is related to the moles of a pure pha

kinetic reactant. The partial derivative, , is equal to the integrand from equation 74 evaluated at :

, (78)

and the partial derivative of the function  with respect to the master unknown is

. (79)

In the numerical method, it is computationally expensive to calculate the functions , so the same app

as Borkovec and Westall (1983) is used inPHREEQC to reduce the number of function evaluations. A new level o

iterations is added when the diffuse layer is explicitly included in the calculations. The functions and their p

derivatives are explicitly evaluated once at the beginning of each of these diffuse-layer iterations. During the

iterations, which occur within the diffuse-layer iterations, the values of the functions are updated using the follo

equation:

, (80)

wherek is the model iteration number and  is the value that is evaluated explicitly at the beginning of th

fuse-layer iteration. The model iterations end when the Newton-Raphson method has converged on a solu

however, convergence is based on the values of the functions  that are estimates. Thus, diffuse-layer i

continue until the values of the functions are the same on successive diffuse-layer iterations within a speci

erance.

When explicitly calculating the composition of the diffuse layer, the function involving thesinh of the

potential unknown (equation 69) is replaced with a charge-balance function that includes the surface charge

diffuse-layer charge:

, (81)

where the function  is zero when charge balance is achieved. The total derivative of  is
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For data input toPHREEQC, explicit calculation of the diffuse layer is invoked using the-diffuse_layer

identifier in theSURFACE data block. Specific surface area (  or ) and mass of surface ( ) are defin

theSURFACE data block. The moles of surface sites are defined (1) inSURFACE if the number of sites is fixed,

or (2) by a proportionality factor in theSURFACE data block and the moles of a phase in

EQUILIBRIUM_PHASES  data block, or (3) by a proportionality factor in theSURFACE data block and the

moles of a kinetic reactant inKINETICS data block. The charge on a surface species is specified in the bala

chemical reaction that defines the species in theSURFACE_SPECIES data block (see “Description of Data

Input”).

Non-Electrostatic Surface Complexation

Davis and Kent (1990) describe a non-electrostatic surface-complexation model. In this model, the

electrostatic term is ignored in the mass-action expressions for surface complexes. In addition, no surface

charge-balance or surface charge-potential relation is used; only the mole-balance equation is included fo

surface site type.

For data input toPHREEQC, the non-electrostatic model for a surface is invoked by using the-no_edlidentifier

in theSURFACE data block (see “Description of Data Input”).

NUMERICAL METHOD FOR SPECIATION AND FORWARD MODELING

The formulation of any chemical equilibrium problem solved byPHREEQC is derived from the set of

functions denoted in the previous sections. These include , , , , , , , , ,

, , , , and , where  and  are the simply the mole-balance functions for hydrogen an

oxygen and  refers to all aqueous master species except H+, e-, H2O and the alkalinity master species. The

corresponding set of master unknowns is , , , , , , , ,  (or

possibly  in speciation calculations), , ,  (or possibly  in speciation calculations),

 (explicit diffuse-layer calculation), , and  (implicit diffuse-layer calculation). When the residu

of all the functions that are included for a given calculation are equal to zero, a solution to the set of nonli

equations has been found, and the equilibrium values for the chemical system have been determined. (N

some equations that are initially included in a given calculation may be dropped if a pure phase or gas pha

not exist at equilibrium.) The solution technique assigns initial values to the master unknowns and then u

modification of the Newton-Raphson method iteratively to revise the values of the master unknowns until 

solution to the equations has been found within specified tolerances.

For a set of equations, , in unknowns  the Newton-Raphson method involves iteratively rev

an initial set of values for the unknowns. Let be the residuals of the equations for the current values

unknowns. The following set of equations is formulated:
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whereJ is the total number of master unknowns for the calculation. The set of equations is linear and can be

simultaneously for the unknowns, . New values of the unknowns are calculated, , w

k refers to the iteration number, after which, new values of the residuals are calculated. The process is rep

until the values of the residuals are less than a specified tolerance.

Two problems arise when using the Newton-Raphson method for chemical equilibria. The first is that

initial values of the unknowns must be sufficiently close to the equilibrium values, or the method does not con

and the second is that a singular matrix may arise if the chemical reactions for a set of phases are not line

independent.PHREEQC uses an optimization technique developed by Barrodale and Roberts (1980) to avoid 

occurrence of singular matrices. The optimization technique also allows inequality constraints to be added

problem, which are useful for constraining the total amounts of phases and solid solutions that can react.

The selection of initial estimates for the master unknowns is described for each type of modeling in th

following sections. Regardless of the strategy for assigning the initial estimates, the estimates for the activ

the master species for elements or element valence states are revised, if necessary, before the Newton-Ra

iterations to produce approximate mole balance. The procedure for aqueous master species is as follows. A

initial estimates have been made, the distribution of species is calculated for each element (except hydrog

oxygen) and, in initial solution calculations only, for the individual valence states which were defined. Subsequ

the ratio of the calculated moles to the input moles is calculated. If the ratio for a master species is great

1.5 or less than 10-5, the following equation is used to revise the value of the master unknown:

, (84)

where is 1.0 if the ratio is greater than 1.5 and 0.3 if the ratio is less than 10-5, and is the total concentration

of an element or element valence state. Analogous equations are used for exchange and surface master s

After revisions to the initial estimates, the distribution of species is calculated. The iterations continue until 

ratios are within the specified ranges, at which point the modified Newton-Raphson technique is used. If th

cessive revisions fail to find activities such that the ratios are within the specified bounds, then a second se

ations tries to reduce the ratios below 1.5 with no lower limit to these ratios. Whether or not the second set

iterations succeeds, the Newton-Raphson technique is then used.

The optimization technique of Barrodale and Roberts (1980) is a modification of the simplex linear

programming algorithm that minimizes the sum of absolute values of residuals (L1 optimization) on a set of

equations subject to equality and inequality constraints. The general problem can be posed with the following

equations:

.

(85)
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The first matrix equation is minimized in the sense that is a minimum, where is the num

of equations to be optimized, subject to the equality constraints of the second matrix equation and the ine

constraints of the third matrix equation.

The approach ofPHREEQCis to include some of the Newton-Raphson equations in the optimization equat

( ), rather than include all of the Newton-Raphson equations as equalities ( ). Equations th

included in theA matrix may not be solved for exact equality at a given iteration, but will be optimized in the se

given above. Thus, at a given iteration, an approximate mathematical solution to the set of Newton-Raphs

equations can be found even if no exact equality solution exists, for example when forcing equality for all equ

would result in an unsolvable singular matrix. The equations for alkalinity, total moles of gas in the gas phase

phases, and solid-solution components are included in theA matrix. All mole-balance, charge-balance, and

surface-potential equations are included in theB matrix. Inequalities that limit the dissolution of pure phases,

solid-solution components, and gas components to the amounts present in the system are included in theC matrix.

In an attempt to avoid some numerical problems related to small numbers in theBmatrix, a row of the matrix

that represents a mole-balance equation is scaled if all coefficients (a column ofA andB) of the corresponding

unknown (change in the log activity of the element master species) are less than 1e-10. In this case, the 

is scaled by 1e-10 divided by the absolute value of the largest coefficient. Alternatively, when specified,

(-diagonal_scale in KNOBS), a mole-balance equation is scaled by 1e-10 divided by the coefficient of the

corresponding unknown if the coefficient of the unknown in the mole-balance equation is less than 1e-10.

The scaled matrix is solved by the optimizing solver, and the solution that is returned is a vector of ch

to the values of the master unknowns. The values of the changes are checked to ensure that the change

unknowns are less than criteria that limit the maximum allowable size of changes. These criteria are spec

default in the program or by input in theKNOBS data block. If any of the changes are too large, then all the chan

to the unknowns, except the mole transfers of pure phases and solid-solution components, are decrease

proportionately to satisfy all of the criteria. Pure-phase and solid-solution mole transfers are not altered ex

produce nonnegative values for the total moles of the pure phases and solid-solution components. After s

changes to the unknowns have been calculated, the master unknowns are updated; new molalities and act

all the aqueous, exchange, and surface species are calculated, and residuals for all of the functions are ca

The residuals are tested for convergence (convergence criteria are defined internally in the program, but 

switched to an alternate set with the-convergence_tolerance in KNOBS or -high_precision option in

SELECTED_OUTPUT data blocks), and a new iteration is begun if convergence has not been attained.

Aqueous Speciation Calculations

Aqueous speciation calculations use a chemical composition for a solution as input and calculate th

distribution of aqueous species and saturation indices for phases. Aqueous speciation calculations includ

equations , , and , which are equations for mole balance for elements or element valence sta

activity of water, and ionic strength. Mole-balance equations for hydrogen and oxygen are not included, b

the total masses of hydrogen and oxygen generally are not known. Instead, the mass of water is assumed

kg or is specified (-water in theSOLUTION  or SOLUTION_SPREAD data block) and the total masses of

bi ai j, x
j
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hydrogen and oxygen are calculated in the speciation calculation from the mass of water and the concentra

all hydrogen and oxygen containing aqueous species.

If pH, pe, or the master unknown for an element or element valence state is specified to be adjusted to

charge balance for the solution, is included to calculate the value of the master unknown (ln , ln , or ln

that produces charge balance. In this case, the calculated pH, pe, or total concentration of  will differ fro

input value. If  is included for the master unknown ln , the equation  is excluded.

If pH, pe, or the master unknown for an element or element valence state is specified to be adjusted to

a specified saturation index for a pure phase,  is included to calculate the value of the master unknown 

ln , or ln ) that produces the target saturation index. In this case, the calculated pH, pe, or total concen

of will differ from the input value. If is included for the master unknown ln , the equation is exclud

If total alkalinity is specified in the input, the mole-balance equation for alkalinity, , is included to

calculate and the total molality of the element associated with alkalinity (carbon in the default databa

the problem definition contains a mole-balance equation for both carbon [or carbon(+4)] and alkalinity, then th

master unknowns associated with these equations are (for the default database files) and

In this case, the pH will be calculated in the speciation calculation and will not be equal to the input pH.

For speciation calculations, if the alkalinity mole-balance equation is included in the problem formulatio

is included as the only optimization equation for the solver. All other equations are included as equality const

No inequality constraints are included for speciation calculations.

Partial redox disequilibrium is allowed in initial solution calculations, and redox options in theSOLUTION

or SOLUTION_SPREAD data block affect the aqueous speciation and saturation index calculations. By de

whenever a value of the activity of the electron is needed to calculate the molality or activity of an aqueous sp

the input pe is used. If a default redox couple is given (-redox) or a redox couple is specified for an element (or

combination of element valence states) (seeSOLUTION  keyword in “Description of Data Input”), then the

mass-action expression for each aqueous species of the redox element is rewritten to remove the activity o

electron from the expression and replace it with the activities of the redox couple. For example, if iron (Fe) is

distributed using the sulfate-sulfide redox couple [S(+6)/S(-2)], then the original chemical reaction for Fe+3:

(86)

would be rewritten using the association reaction for sulfide,

, (87)

to produce the following chemical reaction that does not include electrons:

. (88)

The mass-action expression for this final reaction would be used as the mass-action expression for the sp

, and the differential for the change in the moles of , , would also be based on this mass-a

expression. However, the original mass-action expression (based on equation 86) is used to determine the

mole-balance equations in which the term appears, that is, the species would appear in the mo

ance equation for iron, but not in the mole-balance equations for S(+6) or S(-2). The effect of these manipu

is that ferrous iron, ferric iron, sulfate, and sulfide are in redox equilibrium. Another set of redox elements (
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example oxygen and nitrogen) may also be defined to be in equilibrium among themselves, but not necess

redox equilibrium with iron and sulfur.

By default, if a saturation-index calculation requires a value for pe (or activity of the electron), then the

pe is used. If a default redox couple has been defined (-redox), then the dissolution reaction for the phase is

rewritten as above to eliminate the activity of the electron and replace it with the activities of the redox cou

The set of master unknowns may change for redox elements during a calculation. The process, whi

termed “basis switching”, occurs if the activity of the master species which is the master unknown for a

mole-balance equation becomes ten orders of magnitude smaller than the activity of another master spec

included in the same mole-balance equation. In this case, all of the mass-action expressions involving the

master unknown (including aqueous, exchange, gas, and surface species, and pure phases) are rewritten

of the new master species that has the larger activity. An example of this process is, if nitrogen is present in a

that becomes reducing, the master unknown for nitrogen would switch from nitrate, which would be prese

negligible amounts under reducing conditions, to ammonium, which would be the dominant species. Basi

switching does not affect the ultimate equilibrium distribution of species, but it does speed calculations and

numerical problems in dealing with small concentrations.

Initial values for the master unknowns are estimated and then revised according to the strategy descr

the previous section. For initial solution calculations, the input values for pH and pe are used as initial est

The mass of water is 1.0 kg unless otherwise specified, and the activity of water is estimated to be 1.0. Io

strength is estimated assuming the master species are the only species present and their concentrations

to the input concentrations (converted to units of molality). The activity of the master species of elements (e

hydrogen and oxygen) and element valence states are set equal to the input concentration (converted to m

If the charge-balance equation or a phase-equilibrium equation is used in place of the mole-balance equa

an element or element valence state, then the initial activity of the master species is set equal to one thous

the input concentration (converted to molality).

For data input toPHREEQC all options for a speciation calculation--use of an alkalinity equation,

charge-balance equation, phase-equilibrium equation, and redox couples--are defined in aSOLUTION  or

SOLUTION_SPREAD data block (see “Description of Data Input”).

Calculation of the Initial Composition of an Exchanger

An initial exchange-composition calculation is needed if the composition of an exchanger is not defi

explicitly, but rather, is indicated to be in equilibrium with a specified solution composition. In this case, th

composition of the exchanger is not known, only that it is in equilibrium with a solution. The equations for an in

exchange-composition calculation are , , , and , which are equations for mole balance for e

exchanger, mole balance for each element or element valence state, activity of water, and ionic strength.

For initial exchange-composition calculations, the values of  include only the aqueous concentra

and the mole-balance equations do not contain terms for the contribution of the exchangers to the total e

concentrations. All quantities related to the aqueous phase are the same as for the solution without the ex

present. Essentially, only the values of the master unknowns of the exchange assemblage, , are adju

achieve mole balance for the exchanger. Once mole balance is achieved, the composition of each exchan

known.

f e f m' f H2O
f µ

Tm'
f m'
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All equations for initial exchange-composition calculations are included as equality constraints in the s

No equations are optimized and no inequality constraints are included.

An initial exchange-composition calculation is performed only if the exchanger is defined to be in equilib

with a specified solution. The distribution of species for this solution has already been calculated, either by an

solution calculation or by a batch-reaction or transport calculation. Thus, the values of all master unknowns r

to the aqueous phase are known and are used as initial estimates for the exchange calculation. The initial 

of the master unknown for each exchanger is set equal to the moles of exchange sites for that exchanger.

For data input toPHREEQC, definition of the initial exchange-composition calculation is made with the

EXCHANGE  data block (see “Description of Data Input”).

Calculation of the Initial Composition of a Surface

An initial surface-composition calculation is needed if the composition of a surface is not defined expli

but is indicated to be in equilibrium with a specified solution composition. In this case, the composition of th

surface is not known, only that it is in equilibrium with a solution. The equations for the initial surface-compos

calculation are , or , , , and , which are equations for mole-balance for each type of su

site in the surface assemblage, the charge-potential relation or charge-balance for each surface (both of th

equations are excluded in the non-electrostatic model), mole balance for each element or element valence

activity of water, and ionic strength.

For initial surface-composition calculations, the values of  include only the aqueous concentration

the corresponding mole-balance equations do not contain terms for the contribution of the surfaces to th

element concentrations. All quantities related to the aqueous phase are the same as for the solution witho

surface assemblage present.

For the explicit calculation of the diffuse layer, a charge-balance equation is used for each surface,

values of the master unknowns for each surface type of the surface assemblage,  and the potential u

, are adjusted to achieve mole balance and charge balance for each surface. If the diffuse-layer com

is not explicitly included in the calculation, then the charge-potential equation  is used in place of the su

charge-balance equation. If the non-electrostatic model is used for the surface assemblage, then neither the

charge-balance nor the charge-potential equation is included in the set of equations to be solved.

All equations for initial surface-composition calculations are included as equality constraints in the solve

equations are optimized and no inequality constraints are included.

An initial surface-composition calculation is performed only if the initial surface is defined to be in

equilibrium with a specified solution. The distribution of species for this solution has already been calculated,

by an initial solution calculation or by a batch-reaction or transport calculation. Thus, the values of all mast

unknowns related to the aqueous phase are known and are used as starting estimates for the surface calcula

initial estimate of the activity of the master species for each surface is set equal to one tenth of the moles of s

sites for that surface. For explicit and implicit diffuse-layer calculations, the initial estimate of the potential unkn

 is zero for each surface, which implies that the surface charge is zero.

For data input toPHREEQC, definition of the initial surface-composition calculation is made with the

SURFACE data block (see “Description of Data Input”).
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Calculation of the Initial Composition of Fixed-Volume Gas Phase

An initial gas-phase-composition calculation is needed if the composition of a gas phase is not defin

explicitly, but rather, the composition of a fixed-volume gas phase is defined to be that which is in equilibrium

a specified solution composition. The equations for the initial gas-phase-composition calculation are the s

an initial solution calculation and are , , and , which are equations for mole balance for each ele

or element valence state, activity of water, and ionic strength.

For initial gas-phase-composition calculations, the values of  include only the aqueous concentr

and the corresponding mole-balance equations do not contain terms for the contribution of the gas comp

to the total element concentrations. The values calculated for all quantities related to the aqueous phase 

same as for the solution without the gas phase present. Once the distribution of species in the aqueous p

determined, the partial pressures of all components in the gas phase can be calculated. The partial press

the specified fixed volume are used with the ideal gas law to calculate the moles of each component in th

phase.

All equations for initial gas-phase-composition calculations are included as equality constraints in the s

No equations are optimized and no inequality constraints are included.

An initial gas-phase-composition calculation is performed only if the gas phase is defined to have a co

volume and is defined to be initially in equilibrium with a specified solution. The distribution of species for

solution has already been calculated, either by an initial solution calculation or by a batch-reaction or tran

calculation. Thus, the values of all master unknowns related to the aqueous phase are known and are used

estimates for the initial gas-phase-composition calculation.

For data input toPHREEQC, definition of the initial gas-phase-composition calculation is made with the

GAS_PHASE data block (see “Description of Data Input”).

Batch-Reaction and Transport Calculations

Batch-reaction and transport calculations require calculating equilibrium between the aqueous phase a

equilibrium-phase assemblage, surface assemblage, exchanger assemblage, solid-solution assemblage,

phase that is defined to be present in a chemical system. Irreversible reactions that occur prior to equilibr

include mixing, specified stoichiometric reactions, kinetic reactions, and temperature change. The complet

Newton-Raphson equations that can be included in batch-reaction and transport calculations contains

, , , , , , , , , , and .

Equations for mole balance on hydrogen , activity of water , mole balance on oxygen , ch

balance , and ionic strength  are always included and are associated with the master unknowns

,  (mass of water), , and , which are always included as master unknowns.

Mole-balance equations are included for total concentrations of elements, not individual valence

or combinations of individual valence states. A mole-balance equation for alkalinity can not be included; it is

only in initial solution calculations.

The equation is included if a fixed-pressure gas phase is specified and is present at equilibrium

equations  are included if an exchange assemblage is specified. The equations  are included if a su

assemblage is specified. In addition,  is included for each surface for which an implicit diffuse-layer

f m' f H2O
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calculation is specified or  is included for each surface for which an explicit diffuse-layer calculation is

specified. An equation  is included for each pure phase that is present at equilibrium. An equation  

included for each component of each solid solution that is present at equilibrium.

It is not known at the beginning of the calculation whether a pure phase, solid solution, or fixed-pressu

phase will be present at equilibrium. Thus, at each iteration, the following logic is used to determine which 

equations should be included in the equilibrium calculations. The equation for a phase is included if it has a p

moles, , or if the saturation index is calculated to be greater than the target saturation index. If the eq

is not included in the matrix, then all coefficients for the unknown  in the matrix are set to zero.

For an ideal solid solution, the equations  are included if the moles of any of the components are

greater than a small number ( ) or if the sum, , is greater than 1.0. For an ideal solid solut

, so the summation determines if the sum of the mole fractions is greater than 1.0. If the equ

for a solid solution are not included in the matrix, then all coefficients for the unknowns in the matrix ar

to zero.

For nonideal, binary solid solutions the following procedure to determine whether to include solid-solu

equations is developed from the equations of Glynn and Reardon (1990, equations 37 through 48). If the m

any of the solid-solution components are greater than a small number ( ) then all the equations for th

solution are included. Otherwise, the aqueous activity fractions of the components are calculated from

 and , (89)

whereIAP is the ion activity product for the pure component. Next the mole fractions of the solids that would b

equilibrium with those aqueous activity fractions are determined by solving the following equation forx1 andx2

(=1-x1):

, (90)

wherex1 andx2 are the mole fractions in the solid phase,K1 andK2 are the equilibrium constants for the pure com

ponents, and are the activity coefficients of the components as calculated from the Guggenheim para

for the excess free energy. This equation is highly nonlinear and is solved by first testing subintervals betw

and 1 to find one that contains the mole fraction of component 1 that satisfies the equation and then interval h

to refine the estimate of the mole fraction. Once the mole fractions of the solid have been determined, two va

the “total activity product” ( ) are calculated as follows:

(91)

and . (92)

If , then the equations for the solid solution are included, otherwise, the equations are no

included. If the equations for a solid solution are not included in the matrix, all coefficients for the unknowns

in the matrix are set to zero.

f z s,
f p f pss

np 0>
dnp

f pss

1x10
13– IAPpss

K pss

----------------
pss

∑
IAPpss

K pss

---------------- xpss
=

dnpss

1x10
13–

x1 aq,
IAP1

IAP1 IAP2+
-------------------------------= x2 aq,

IAP2

IAP1 IAP2+
-------------------------------=

x1λ1K1 x2λ2K2+ 1
x1 aq,
λ1K1
-------------

x2 aq,
λ2K2
-------------+

---------------------------------=

λ1 λ2

Π∑
Πaq∑ IAP1 IAP2+=

Πsolid∑ x1λ1K1 x2λ2K2+=

Πsolid∑ Πaq∑<
dnpss
 NUMERICAL METHOD FOR SPECIATION AND FORWARD MODELING        39



cluded

or if the

pecies, is

he gas

s are

solver:

ed to

e of the

tive,

resid-

e esti-

s than or

olution,

crease

n of

alues

d with

tion and

mblage,

s phase

ata

ther

ally

cies
At each iteration, the equation for the sum of partial pressures of gas components in the gas phase is in

for a fixed-pressure gas phase if the moles in the gas phase are greater than a small number ( ), 

sum of the partial pressures of the gas-phase components, as calculated from the activities of aqueous s

greater than the total pressure. If the equation for the sum of the partial pressures of gas components in t

phase is not included in the matrix, then all coefficients of the unknown  are set to zero.

Equations , and are included as optimization equations in the solver. All other equation

included as equality constraints in the solver. In addition, several inequality constraints are included in the

 (1) the value of the residual of an optimization equation , which is equal to , is constrain

be nonnegative, which maintains an estimate of saturation or undersaturation for the mineral; (2) the valu

residual of an optimization equation , which is equal to , is constrained to be nonnega

which maintains an estimate of saturation or undersaturation for the component of the solid solution; (3) the

ual of the optimization equation for  is constrained to be nonnegative, which maintains a nonnegativ

mate of the total gas pressure; (4) the decrease in the mass of a pure phase, , is constrained to be les

equal to the total moles of the phase present, ; (5) the decrease in the mass of a component of a solid s

, is constrained to be less than or equal to the total moles of the component present, ; and (6) the de

in the moles in the gas phase, , is constrained to be less than the moles in the gas phase, .

Initial values for the master unknowns for the aqueous phase are taken from the previous distributio

species for the solution. If mixing of two or more solutions is involved, the initial values are the sums of the v

in the solutions, weighted by their mixing factor. If exchangers or surfaces have previously been equilibrate

a solution, initial values are taken from the previous equilibration. If they have not been equilibrated with a

solution, the estimates of the master unknowns are the same as those used for initial exchange-composi

initial surface-composition calculations. Initial values for the moles of each phase in the pure-phase asse

each component in the solid solutions in the solid-solution assemblage, and each gas component in the ga

are set equal to the input values or the values from the last simulation in which they were saved.

For data input toPHREEQC, definition of batch-reaction and transport calculations rely on many of the d

blocks. Initial conditions are defined withSOLUTION  or SOLUTION_SPREAD, EXCHANGE , SURFACE,

GAS_PHASE, EQUILIBRIUM_PHASES , SOLID_SOLUTIONS , andUSE data blocks. Batch reactions are

defined by initial conditions and withMIX , KINETICS , REACTION , REACTION_TEMPERATURE , and

USE data blocks. Transport calculations are specified with theADVECTION  or theTRANSPORT data block

(see “Description of Data Input”).

NUMERICAL METHOD AND RATE EXPRESSIONS FOR CHEMICAL KINETICS

A major deficiency with geochemical equilibrium models is that minerals, organic substances, and o

reactants often do not react to equilibrium in the time frame of an experiment or a model period. A kinetic

controlled reaction of a solid or a nonequilibrium solute generates concentration changes of aqueous spe

according to the rate equation:

1x10
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, (93)

whereci,k is the stoichiometric coefficient of speciesi in the kinetic reaction, andRk is the overall reaction rate for

substancek (mol/kgw/s). In general, reaction rates vary with reaction progress, which leads to a set of ordina

ferential equations that must be solved.

Kinetic rates have been published for numerous reactions, and for various conditions of temperature, pr

and solution composition. However, different researchers applied different rate expressions to fit observed ra

it is difficult to select rate expressions (which commonly have been hard coded into programs) that have su

generality. The problem is circumvented inPHREEQCwith an embedded BASIC interpreter that allows definition o

rate expressions for kinetic reactions in the input file in a general way, obviating the need for hard-coded ra

expressions in the program.

Numerical Method

The rate must be integrated over a time interval, which involves calculating the changes in solution

concentrations while accounting for effects on the reaction rate. Many geochemical kinetic reactions result in

sets of equations in which some rates (the time derivatives of concentration change) are changing rapidly 

others are changing slowly as the reactions unfold in time.PHREEQC solves such systems by a Runge-Kutta (RK

algorithm, which integrates the rates over time. An RK scheme by Fehlberg (1969) is used, with up to 6 interm

evaluations of the derivatives. The scheme includes an RK method of lower order to derive an error estima

error estimate is compared with a user-defined error tolerance to automatically decrease or increase the int

time interval to maintain the errors within the given tolerance. Furthermore, if the rates in the first three RK

evaluations differ by less than the tolerance, the final rate is calculated directly and checked once more ag

required tolerance. The user can specify the number of intermediate RK subintervals which are evaluated 

final integration of the interval is attempted (see “Description of Data Input”). The coefficients in the schem

from Cash and Karp (1990).

Rate Expressions

The overall rate for a kinetic reaction of minerals and other solids is:

, (94)

whererk is the specific rate (mol/m2/s),A0 is the initial surface area of the solid (m2), V is the amount of solution

(kgw), m0k is the initial moles of solid,mk is the moles of solid at a given time, and (mk/m0k)n is a factor to account

for changes inA0/V during dissolution and also for selective dissolution and aging of the solid. For uniformly

solving spheres and cubesn = 2/3. All calculations inPHREEQCare in moles, and the factorA0/V must be provided

by the user to obtain the appropriate scaling.

The specific rate expressions, , for a selection of substances have been included in the database u

keywordRATES. These specific rates have various forms, largely depending on the completeness of the

experimental information. When information is lacking, a simple rate that is often applied is

dmi

dt
--------- ci k, Rk=

Rk rk
A0

V
------

mk

m0k
---------

 
 
  n

=

r k
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wherekk is an empirical constant andIAP/Kk is the saturation ratio (SR). This rate equation can be derived from

transition-state theory, where the coefficient  is related to the stoichiometry of the reaction when an acti

complex is formed (Aagaard and Helgeson, 1982; Delany and others, 1986). Often, . An advantage

expression is that the rate equation applies for both supersaturation and undersaturation, and the rate is 

equilibrium. The rate is constant over a large domain whenever the geochemical reaction is far from equi

(IAP/K < 0.1), and the rate approaches zero whenIAP/K approaches 1.0 (equilibrium).

The rate expression may also be based on the saturation index (SI) in the following form:

. (96)

This rate expression has been applied with some success to dissolution of dolomite (Appelo and others, 

Rate expressions often contain concentration-dependent terms. One example is the Monod equatio

, (97)

wherermax is the maximal rate, andKm is equal to the concentration where the rate is half of the maximal rat

The Monod rate equation is commonly used for simulating the sequential steps in the oxidation of organic

(Van Cappellen and Wang, 1996). A series of rate expressions can be developed in line with the energy y

the oxidant; firstO2 is consumed, then , and successively other, more slowly operating oxidants such a

Fe(III) oxides and . The coefficients in the Monod equation can be derived from first-order rate equatio

the individual processes. For degradation of organic matter (C) in soils the first-order rate equation is

, (98)

wheresC is organic carbon content (mol/kg soil), andk1 is the first-order decay constant (s-1). The value ofk1 is

approximately equal to 0.025 yr-1 in a temperate climate with aerobic soils (Russell, 1973), whereas in sand

aquifers in The Netherlands, where  is the oxidant,  yr-1. Concentrations of up to 3 MO2 are

found in ground water even outside the redox-domain of organic degradation byO2, and 3 MO2 may be taken

as the concentration where the (concentration-dependent) rate for aerobic degradation equals the reaction

denitrification. First-order decay (k1 = 0.025 yr-1 for 0.3 mMO2 andk1 = 5e-4 yr-1 for 3 M O2) is obtained with

the coefficientsrmax= 1.57e-9 s-1 andKm = 294 M in the Monod equation, and oxygen as the limiting solute.

similar estimate for denitrification is based onk1 = 5e-4 yr-1 for = 3 mM andk1 = 1e-5 yr-1 for = 3 M,

which yieldsrmax= 1.67e-11 s-1 andKm = 155 M. The combined overall Monod expression for degradation

organic carbon in a fresh-water aquifer is then:

(99)

where the factor 6 derives from recalculating the concentration ofsC from mol/kg soil to mol/kg pore water.

A further aspect of organic matter decomposition is that a part appears to be refractory and particul

r k kk 1
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resistant to degradation. Some models have been proposed to account for the tendency of part of the sedi

organic carbon to survive; tentatively, a factor  may be assumed, which makes the overall rate secon

This factor implies that a decrease to 1/10 of the original concentration results in a decrease of 1/100 in th

further breakdown. It must be noted that this simple factor is used to approximate a very complicated proces

more thorough treatment of the process is needed, but is also possible given the flexibility of defining rates inPHRE-

EQC.

Still other rate expressions are based on detailed measurements in solutions with varying concentration

aqueous species that influence the rate. For example, Williamson and Rimstidt (1994) give a rate expressi

oxidation of pyrite:

, (100)

which shows a square root dependence on the molality of oxygen, and a small increase of the rate with incr

pH. This rate is applicable for the dissolution reaction only, and only when the solution contains oxygen. It is

ably inadequate when the solution approaches equilibrium or when oxygen is depleted.

An example of a more complete rate expression which applies for both dissolution and precipitation is th

equation for calcite. Plummer and others (1978) have found that the rate can be described by the equation

, (101)

where bracketed chemical symbols indicate activity, and the coefficientsk1, k2 andk3 have been determined as a

function of temperature by Plummer and others (1978) from calcite dissolution experiments in CO2-charged solu-

tions. The rate contains a forward partrf (first three terms of equation 101), and a backward partrb(last term of

equation 101), and thus is applicable for both dissolution and precipitation. The backward rate contains a c

cientk4, the value of which depends on the solution composition. In a pure water-calcite system, bicarbona

centration is approximately equal to twice the calcium concentration and the backward rate can be approxim

. (102)

At equilibrium,  is the activity at saturation . Alsorcalcite= 0, and therefore,

. (103)

Combining equations 101, 102, and 103 gives:

. (104)

In a pure Ca-CO2 system at constant CO2 pressure, the ion activity product (IAP) is:

 and . (105)

Thus, for a calcite-water system, the rate for calcite can be approximated as:
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whererf contains the first three terms given in equation 101.

EQUATIONS AND NUMERICAL METHOD FOR TRANSPORT MODELING

PHREEQC has the capability to model several one-dimensional transport processes including: (1) diffu

(2) advection, (3) advection and dispersion, and (4) advection and dispersion with diffusion into stagnant 

which is referred to as dual porosity. All of these processes can be combined with equilibrium and kinetic che

reactions.

The Advection-Reaction-Dispersion Equation

Conservation of mass for a chemical that is transported (fig. 1) yields the advection-reaction-dispers

(ARD) equation:

, (107)

whereC is concentration in water (mol/kgw),t is time (s),v is pore water flow velocity (m/s),x is distance (m),DL

is the hydrodynamic dispersion coefficient [m2/s, , withDe the effective diffusion coefficient,

and  the dispersivity (m)], andq is concentration in the solid phase (expressed as mol/kgw in the pores).

term  represents advective transport,  represents dispersive transport, and  is the change 

centration in the solid phase due to reactions (q in the same units asC). The usual assumption is thatv andDL are

equal for all solute species, so thatC can be the total dissolved concentration for an element, including all re

species.
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Figure 1.-- Terms in the advection-reaction-dispersion equation.
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The transport part of equation 107 is solved with an explicit finite difference scheme that is forward in

central in space for dispersion, and upwind for advective transport. The chemical interaction term  fo

element is calculated separately from the transport part for each time step and is the sum of all equilibrium

non-equilibrium reaction rates. The numerical approach follows the basic components of the ARD equation

split-operator scheme (Press and others, 1992; Yanenko, 1971). With each time step, first advective transp

calculated, then all equilibrium and kinetically controlled chemical reactions, thereafter dispersive transport,

is followed again by calculation of all equilibrium and kinetically controlled chemical reactions. The scheme d

from the majority of other hydrogeochemical transport models (Yeh and Tripathi, 1989) in that kinetic and

equilibrium chemical reactions are calculated both after the advection step and after the dispersion step. This

numerical dispersion and the need to iterate between chemistry and transport.

A major advantage of the split-operator scheme is that numerical accuracy and stability can be obtain

adjusting time step to grid size for the individual parts of the equation. Numerical dispersion is minimized by a

having the following relationship between time and distance discretization:

, (108)

where is the time step for advective transport, and is the cell length. Numerical instabilities (oscillat

in the calculation of diffusion/dispersion are eliminated with the constraint:

, (109)

where is the time step (s) for dispersive/diffusive transport calculations. The two conditions of equatio

and 109 are the Courant condition for advective transport and the Von Neumann criterion for dispersive tra

calculations, respectively (for example, Press and others, 1992). Numerical dispersion is in many cases ne

when , because physical dispersive transport is then equally or more important than advective tran

When a fine grid is used to reduce numerical dispersion, the time step for dispersive transport calculations

tion 109) may become smaller than the time step for advective calculations (equation 108), because the fir

quadratic dependence on grid size. The conflict is solved by multiple dispersion time steps such that

, and calculating chemical reactions after each of the dispersion time steps. For input toPHRE-

EQC, a time step must be defined which equals the advection time step , or, if diffusion is modeled, equa

diffusion period. Furthermore, the number ofshifts must be defined, which is the number of advection time ste

(or diffusion periods) to be calculated.

Dispersive transport in a central difference scheme is essentially mixing of cells. A mixing factormixf is

defined as

, (110)

wheren is a positive integer. The restriction is that never more is mixed out of a cell than stays behind, that ismixf

must be less than 1/3 as follows from equation 109. When, according to equation 110 withn = 1,mixf is greater

than 1/3, the value ofn is increased such thatmixf is less than or equal to 1/3. The dispersion time step is then

 andn mixes are performed.

q t∂⁄∂

t∆( )A
x∆

v
------=

t∆( )A x∆

t∆( )D
x∆( )2

3DL
--------------≤

t∆( )D

∆x αL≤

t∆( )D∑ t∆( )A=
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The numerical scheme has been checked by comparison with analytical solutions for simple cases with

exchange. Linear exchange results when the exchange coefficient for the exchange half-reaction is equa

homovalent cations. It gives a linear retardationR = 1 +CEC / C, whereCEC is the cation exchange capacity,

expressed in mol/kgw. In the following example, a 130 m flow tube contains water with an initial concentra

C(x,0) =Ci = 0. The displacing solution has concentrationC = C0 = 1 mmol/kgw, and the pore-water flow velocity

is v = 15 m/year. The dispersivity is m, and the effective diffusion coefficient isDe = 0 m2/s. The profile

is given after 4 years for two chemicals, one withR = 1 (Cl-) and the other withR = 2.5 (Na+).

Two boundary conditions can be considered for this problem. One entails a flux or third type bounda

condition atx = 0:

. (111)

This boundary condition is appropriate for laboratory columns with inlet tubing much smaller than the colu

cross section. The solution for the ARD equation is then (Lindstrom and others, 1967):

, (112)

where, with :

. (113)

Figure 2 shows the comparison for three simulations with different grid spacings,  = 15, 5, and 1.

which correspond with = 1, 1/3, and 1/9 years, respectively. For Cl-, which hasR= 1, the fronts of the three

simulations are indistinguishable and in excellent agreement with the analytical solution. For the retarded io+,

which hasR= 2.5, the average location of the breakthrough curve for all grid spacings is correct and is in agre

with the analytical solution. However, the simulations with coarser grids show a more spread-out breakthrou

is due to numerical dispersion. The finest grid gives the closest agreement with the analytical solution, but re

the most computer time.

Computer time is primarily dependent on the number of calls to the geochemical subroutines ofPHREEQC,

and in the absence of kinetic reactions, the number of calls is proportional to (number of cells)x (number of

advection steps)x (1 + number of dispersion steps). In this example,  = 0 + 5x 15 m2/yr. Thus,

by equation 110,mixf= 1/3, 1, and 3, respectively for the progressively smaller cell sizes. For the 15-meter cell

(mixf = 1/3), one dispersion step is taken for each advection step; for the 5-meter cell size (mixf = 1), three

dispersion steps are taken for each advection step; and for the 1.67-meter cell size (mixf= 3), nine dispersion steps

are taken for each advection step. Figure 2 shows profiles the advective front of Cl (C/C0 = 0.5) after 4 years of

travel, when it has arrived at 60 m; for the 15-meter cell size, this requires 4 advection steps. The flowtube c

of 9 cells for which geochemical calculations are done for each step; therefore, the number of the reactio

calculations is 9x 4 x (1 + 1) = 72. Larger numbers of cells and advection steps apply for the smaller grids.

number of calls to the reaction calculations for the other two cases is 27x 12x (1 + 3) = 1,296; and 81x 36x (1 +

9) = 29,160.

The examples given here have linear retardation to enable comparison with analytical solutions. Ho

linear retardation is subject to large numerical dispersion, and the examples are, in a sense, worst cases with
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to numerical dispersion. In many cases of geochemical interest, the chemical reactions help to counteract nu

dispersion because the reactions tend to sharpen fronts, for example with precipitation/dissolution reaction

displacement chromatography. In other cases, exchange with a less favored ion may give a real, chemical dis

that exceeds the effects of numerical dispersion.

Another boundary condition is the Dirichlet, or first-type, boundary condition, which involves a consta

concentrationC(0,t) atx = 0:

. (114)

This boundary condition is valid for water infiltrating from a large reservoir in full contact with the underlying s

for example infiltration from a pond, or diffusion of seawater into underlying sediment. The solution for the 

equation is in this case (Lapidus and Amundson, 1952):

, (115)

where,

. (116)
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Figure 2.-- Analytical solution for 1D transport with ion-exchange reactions and flux boundary
condition compared with PHREEQC calculations at various grid spacings.
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Figure 3 shows the results of three simulations with the same discretizations as the previous transp

example. Again, the conservative solute (Cl- with R= 1) is modeled accurately for all three grid sizes. The retard

chemical (Na+, R = 2.5) shows numerical dispersion for the coarser grids, but again, the average front loca

agree. With the constant concentration-boundary condition, the number of dispersion time steps is twice 

number for the flux case because of the specified condition atx = 0. Also the effect of the first-type boundary

condition is to increase diffusion over the contact surface of the column with the outer solution. The flux o

chemical over the boundary is correspondingly larger and the fronts have progressed a few meters further

figure 2. More comparisons of analytical solutions are given in the discussion of example 11 (breakthrough

outlet of a column) and example 12 (diffusion from a constant source).

Transport of Heat

Conservation of heat yields the transport equation for heat, or rather, for the change of temperature

equation is identical to the advection-reaction-dispersion equation for a chemical substance:

, (117)
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Figure 3.-- Analytical solution for 1D transport with ion-exchange reactions and constant boundary
condition compared with PHREEQC calculations at various grid spacings.
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whereT is the temperature (˚C), is the porosity (a fraction of total volume, unitless), is the density (kg/m3), k

is the specific heat (kJ˚C-1kg-1), is a term which entails both the dispersion by advective flow and the heat c

ductivity of the aquifer (kJ˚C-1m-1s-1), and subscriptsw ands indicate water and solid, respectively. The temper

tureT is assumed to be uniform over the volume of water and solid.

Dividing equation 117 by  gives:

, (118)

where  is the temperature retardation factor (unitless), and  is the therm

dispersion coefficient. The thermal dispersion coefficient contains a component for pure diffusion, and a co

nent for dispersion due to advection: , similar to the hydrodynamic dispersion coefficient. Th

analogy permits the use of the same numerical scheme for both mass and heat transport.

De Marsily (1986) suggests that the thermal dispersivity and the hydrodynamic dispersivity ma

equal, whereas the thermal diffusion coefficient  is orders of magnitude larger thanDe. Thus, dispersion due to

advection can be calculated in the same algorithm for both mass and heat, while thermal diffusion may req

additional calculation when it exceeds hydrodynamic diffusion. When temperatures are different in the colum

when the thermal diffusion coefficient is larger than the hydrodynamic diffusion coefficient,PHREEQC first

calculates, for one time step, the temperature distribution and the chemical reactions due to thermal diffus

excess of the hydrodynamic diffusion. SubsequentlyPHREEQCcalculates transport for the combination of heat an

mass due to hydrodynamic diffusion for the time step. The temperature retardation factor and the thermal di

coefficient must be defined in the input file (identifier-thermal_diffusion in keywordTRANSPORT). Both

parameters may vary in time, but are uniform (and temperature independent) over the flow domain.

The similarity between thermal and hydrodynamic transport is an approximation which mainly falls sh

because diffusion of mass is by orders of magnitude larger in water than in minerals, whereas diffusion of 

comparable in the two media although often anisotropic in minerals. The (small) difference in thermal diffus

leads to complicated heat transfer at phase boundaries which is not accounted for byPHREEQC. Also,PHREEQCdoes

not consider the convection that may develop in response to temperature gradients.

Transport in Dual Porosity Media

Water in structured soils and in solid rock has often a dual character with regard to flow: part of the w

mobile and flows along the conduits (continuous joints, fractures, connected porosity), while another part r

immobile or stagnant within the structural units. Exchange of water and solutes between the two parts may

through diffusion. Dual porosity media can be simulated inPHREEQC either with the first-order exchange

approximation or with finite differences for diffusion in the stagnant zone.

First-Order Exchange Approximation

 Diffusive exchange between mobile and immobile water can be formulated in terms of a mixing proc

between mobile and stagnant cells. In the following derivation, one stagnant cell is associated with one mobi

The first-order rate expression for diffusive exchange is
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where subscriptm indicates mobile andim indicates immobile,Mim are moles of chemical in the immobile zone

is porosity of the stagnant (immobile) zone (a fraction of total volume, unitless),Rim is retardation in the stag-

nant zone (unitless),Cim is the concentration in stagnant water (mol/kgw),t is time (s),Cm is the concentration in

mobile water (mol/kgw), and  is the exchange factor (s-1). The retardation is equal toR = 1 +dq/dC, which is

calculated implicitly byPHREEQC through the geochemical reactions. The retardation contains the changedq in

concentration of the chemical in the solid due toall chemical processes including exchange, surface complex

ation, kinetic and mineral reactions; it may be non-linear with solute concentration and it may vary over tim

the same concentration.

The equation can be integrated with the following initial conditions:

 and , att = 0, and by using the mole-balance condition:

.

The integrated form of equation 119 is then:

, (120)

where , ,  is the water filled porosity of the mobile part (a

fraction of total volume, unitless), andRm is the retardation in the mobile area.

A mixing factor,mixfim, can be defined that is a constant for a given timet:

. (121)

Whenmixfim is entered in equation 120, the first-order exchange is shown to be a simple mixing process in

fractions of two solutions mix:

. (122)

Similarly, an equivalent mixing factor,mixfm, for the mobile zone concentrations is obtained with the mole-ba

ance equation:

(123)

and the concentration ofCm at timet is

. (124)

The exchange factor  can be related to specific geometries of the stagnant zone (Van Genuchten, 1985

example, when the geometry is spherical, the relation is

, (125)
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whereDe is the diffusion coefficient in the sphere (m2/s),a is the radius of the sphere (m), andfs→1 is a shape factor

for sphere-to-first-order-model conversion (unitless). Other geometries can likewise be transformed to a va

 using other shape factors (Van Genuchten, 1985). These shape factors are given in table 1.

An analytical solution is known for a pulse input in a medium with first-order mass transfer between m

and stagnant water (Van Genuchten, 1985; Toride and others, 1993); example 13 defines a simulation tha

compared with the analytical solution. A 2 m column is discretized in 20 cells of 0.1 m. The resident solutio

mM KNO3 in both the mobile and the stagnant zone. An exchange complex of 1 mM is defined, and excha

coefficients are adapted to give linear retardationR = 2 for Na+. A pulse that lasts for 5 shifts of 1 mM NaCl is

followed by 10 shifts of 1 mM KNO3. The Cl (R = 1) and Na (R = 2) profiles are calculated as a function of dep

The transport variables are  = 0.3;  = 0.1;vm = 0.1 / 3600 = 2.778e-5 m/s; and  = 0.015 m. The

stagnant zone consists of spheres with radius a = 0.01 m, diffusion coefficientDe = 3.e-10 m2/s, and a shape factor

fs→1 = 0.21. This gives an exchange factor = 6.8e-6 s-1. In thePHREEQCinput file , , and must be given;

Rm andRim are calculated implicitly byPHREEQC through the geochemical reactions.

Figure 4 shows the comparison ofPHREEQC with the analytical solution (obtained withCXTFIT, version 2,

Toride and others, 1995). The agreement is excellent for Cl- (R= 1), but the simulation shows numerical dispersio

for Na+ (R = 2). When the grid is made finer so that  is equal to or smaller than  (0.015 m), numerical

dispersion is much reduced. In the figure, the effect of a stagnant zone is to make the shape of the pulse

asymmetrical. The leading edge is steeper than the trailing edge, where a slow release of chemical from the s

zone maintains higher concentrations for a longer period of time.

Finite Differences for the Stagnant Zone

As an alternative to first-order exchange of stagnant and mobile zones, a finite difference grid can be la

the stagnant region. Fick’s diffusion equations, and , transform to finite differences

an arbitrarily shaped cellj:

, (126)

where is the concentration in cellj at the current time, is the concentration in cellj after the time step,

is the time step [s, equal to ( )D in PHREEQC], i is an adjacent cell,Aij is shared surface area of celli andj (m2), hij

is the distance between midpoints of cellsi andj (m),Vj is the volume of cellj (m3), andfbc is a factor for boundary

cells (-). The summation is for all cells (up ton) adjacent toj. WhenAij  andhij  are equal for all cells, a central dif-

ference algorithm is obtained that has second-order accuracy [O(h)2]. It is therefore advantageous to make the gri

regular.

The correction factorfbc depends on the ratio of the volume of the mobile zone,Vm, to the volume of the

boundary cell which contacts the mobile zone,Vbc. When the two volumes are equal,fbc = 1. It can be shown that

 when  (or if the concentration is constant in the mobile region, Appelo and Postma, 1993, p.

Likewise,fbc = 0 whenVm = 0. To a good approximation therefore,

. (127)
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Equation 126 can be restated in terms of mixing factors for combinations of adjacent cells. For an ad

cell, the mixing factor contains the terms which multiply the concentration difference (Ci - Cj),

(128)

and for the central cell, the mixing factor is

, (129)

which give in equation 126:

. (130)

It is necessary that 0 <mixf< 1 to prevent numerical oscillations. If anymixf is outside the range, the grid of

mobile and stagnant cells must be adapted. Generally, this requires a reduction of , which can be achi

increasing the number of mobile cells. An example calculation is given in example 13, where the stagnan

consists of spheres.
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Figure 4.-- Analytical solution for transport with stagnant zones, a pulse input, and ion-exchange
reactions compared with PHREEQC calculations at various grid spacings.
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Table 1.--Shape factors for diffusive first-order exchange between cells with mobile and immobile water

Shape of
stagnant region

Dimensions
(x, y, z) or (2r, z)

First-order
equivalent fs→1

Comments

Sphere 2a 0.210 2a = diameter

Plane sheet 2a, 0.533 2a = thickness

Rectangular prism 2a, 2a, 0.312 rectangle

2a, 2a, 16a 0.298

2a, 2a, 8a 0.285

2a, 2a, 6a 0.277

2a, 2a, 4a 0.261

2a, 2a, 3a 0.246

2a, 2a, 2a 0.220 cube 2ax2ax2a

2a, 2a, 4a/3 0.187

2a, 2a, a 0.162

2a, 2a, 2a/3 0.126

2a, 2a, 2a/4 0.103

2a, 2a, 2a/6 0.0748

2a, 2a, 2a/8 0.0586

Solid cylinder 2a, 0.302 2a = diameter

2a, 16a 0.289

2a, 8a 0.277

2a, 6a 0.270

2a, 4a 0.255

2a, 3a 0.241

2a, 2a 0.216

2a, 4a/3 0.185

2a, a 0.161

2a, 2a/3 0.126

2a, 2a/4 0.103

2a, 2a/6 0.0747

2a, 2a/8 0.0585

Pipe wall 2ri, 2ro, 2ri = pore diameter

(surrounds the 2a, 4a 0.657 2ro = outer diameter

of pipe (Enter wall
thicknessro - ri = a in

Equation 125).

 mobile pore) 2a, 10a 0.838

2a, 20a 0.976

2a, 40a 1.11

2a, 100a 1.28

2a, 200a 1.40

2a, 400a 1.51

∞ ∞,

∞

∞

∞
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For data input toPHREEQC, 1D transport including only advection is accomplished with theADVECTION

data block. All other 1D transport calculations, including diffusion, advection and dispersion, and advectio

dispersion in a dual porosity medium, require theTRANSPORT data block. Initial conditions of the transport

column are defined withSOLUTION (or SOLUTION_SPREAD), EQUILIBRIUM_PHASES , EXCHANGE ,

GAS_PHASE, SOLID_SOLUTIONS , andSURFACE data blocks. Kinetic reactions are defined with

KINETICS  data blocks. Infilling solutions are defined withSOLUTION  (or SOLUTION_SPREAD) data

blocks (see “Description of Data Input”).

EQUATIONS AND NUMERICAL METHOD FOR INVERSE MODELING

PHREEQC has capabilities for geochemical inverse modeling, which attempts to account for the chem

changes that occur as a water evolves along a flow path (Plummer and Back, 1980; Parkhurst and others

Plummer and others, 1991, Plummer and others, 1994). In inverse modeling, one aqueous solution is ass

mix with other aqueous solutions and to react with minerals and gases to produce the observed composi

second aqueous solution. Inverse modeling calculates mixing fractions for the aqueous solutions and mole t

of the gases and minerals that produce the composition of the second aqueous solution. The basic appro

inverse modeling is to solve a set of linear equalities that account for the changes in the moles of each elem

the dissolution or precipitation of minerals (Garrels and Mackenzie, 1967, Parkhurst and others, 1982). P

approaches have also included equations to account for mixing, conservation of electrons, which forces ox

reactions to balance reductive reactions, and isotope mole balance (Plummer and Back, 1980; Parkhurst an

1982; Plummer and others, 1983; Plummer, 1984; Plummer and others, 1990; Plummer and others, 1991

Plummer and others, 1994).

Equations and Inequality Constraints

PHREEQCexpands on previous approaches by the inclusion of a more complete set of mole-balance equ

and the addition of inequality constraints that allow for uncertainties in the analytical data. Mole-balance equ

are included for (1) each element or, for a redox-active element, each valence state of the element, (2) al

(3) electrons, which allows redox processes to be modeled, (4) water, which allows for evaporation and d

and accounts for water gained or lost from minerals, and (5) each isotope (Parkhurst, 1997). Also included

a charge-balance equation for each aqueous solution, and (7) an equation that relates uncertainty terms 

alkalinity, and total dissolved inorganic carbon for each solution. Furthermore, inequalities are used (8) to co

the size of the uncertainty terms within specified limits, and (9) to constrain the sign of the mole transfer o

reactants.

The unknowns for this set of equations and inequalities are (1) the mixing fraction of each aqueous so

, (2) the mole transfers of minerals and gases into or out of the aqueous solution , (3) the aqueous 

transfers between valence states of each redox element (the number of redox reactions for each redox

is the number of valence states minus one), and (4) a set of uncertainty terms that account for uncertaintie

analytical data . Unlike previous approaches to inverse modeling, uncertainties are assumed to be pre

the analytical data, as evidenced by the charge imbalances found in all water analyses. Thus, the uncertain

 represent uncertainties due to analytical error and spatial or temporal variability in concentration of 

αq αp
αr

δm q,

δm q,
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element, element valence state, or alkalinity,m, in each aqueous solutionq. The uncertainty terms can be constraine

to be less than specified uncertainty limits, , which allows user-supplied estimates of uncertainty for e

element or element valence state to limit the deviation from the analytical data ( ) of revised element

concentrations ( ) that are calculated in mole-balance models.

Mole-Balance Equations

The mole-balance equations, including the uncertainty terms and redox reactions, for elements and v

states are defined as

, (131)

whereQ indicates the number of aqueous solutions that are included in the calculation,  is the total m

element or element valence statem in aqueous solutionq, can be positive or negative, is the coefficien

of master speciesm in the dissolution reaction for phasep (by convention, all chemical reactions for phases are

written as dissolution reactions; precipitation in mole-balance models is indicated by negative mole transfe

), P is the total number of reactive phases,  is the stoichiometric coefficient of secondary maste

ciesm in redox reactionr, andR is the total number of aqueous redox reactions. The last aqueous solution, nu

Q, is assumed to be formed from mixing the firstQ-1 aqueous solutions, or,  for  and .

For PHREEQC, redox reactions are taken from the reactions for secondary master species defined in

SOLUTION_SPECIES input data blocks. Dissolution reactions for the phases are derived from chemical reac

defined inPHASES andEXCHANGE_SPECIES input data blocks (see “Description of Data Input”).

Alkalinity-Balance Equation

The form of the mole-balance equation for alkalinity is identical to the form for other mole-balance equa

, (132)

whereAlk refers to alkalinity. The difference between alkalinity and other mole-balance equations is contain

the meaning of and . What is the contribution to the alkalinity of an aqueous solution due to aqu

redox reactions or the dissolution or precipitation of phases? The alkalinity contribution of a reaction is defin

the sum of the alkalinities of the aqueous species in a redox or phase-dissolution reaction.PHREEQCdefines

and  as follows:

, (133)

and

, (134)

um q,
Tm q,

Tm q, δm q,+

cqα
q

Tm q, δm q,+( )
q

Q

∑ cm p, α
p

p

P

∑ cm r, αr
r

R

∑+ + 0=

Tm q,
δm q, cm p,

αp 0< cm r,

cq 1= q Q< cQ 1–=

cqαq TAlk q, δAlk q,+( )
q

Q

∑ cAlk p, α
p

p

P

∑ cAlk r, αr
r

R

∑+ + 0=

cAlk r, cAlk p,

cAlk r,
cAlk p,

cAlk r, bAlk i, ci r,
i

Naq

∑=

cAlk p, bAlk i, ci p,
i

Naq

∑=
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where is the number of equivalents of alkalinity per mole of speciesi, is the stoichiometric coefficient

of the speciesi in the aqueous redox reactionr, and  is the stoichiometric coefficient of the speciesi in the

dissolution reaction for phasep.

Electron-Balance Equation

The mole-balance equation for electrons assumes that no free electrons are present in any of the a

solutions. Electrons may enter or leave the system through the aqueous redox reactions or through the p

dissolution reactions. However, the electron-balance equation requires that any electrons entering the sys

through one reaction be removed from the system by another reaction:

, (135)

where is the number of electrons released or consumed in aqueous redox reactionr, and is the number

of electrons released or consumed in the dissolution reaction for phasep.

Water-Balance Equation

The mole-balance equation for water is

, (136)

where  is the gram formula weight for water (approximately 0.018 kg/mol),  is the mass o

water in aqueous solution ,  is the stoichiometric coefficient of water in aqueous redox reactionr, and

 is the stoichiometric coefficient of water in the dissolution reaction for phasep.

Charge-Balance Equation

The charge-balance equations for the aqueous solutions constrain the unknown ’s to be such that, w

’s are added to the original data, charge balance is produced in each aqueous solution. The charge-bal

equation for an aqueous solution is

, (137)

where  is the charge imbalance in aqueous solutionq calculated by a speciation calculation and  is

defined to be the charge on the master species plus the alkalinity assigned to the master species,

. For alkalinity, is defined to be -1.0. The summation ranges over all elements or elem

valence states and includes a term for alkalinity, just as charge balance is commonly calculated by summin

cationic and anionic elements plus a contribution from alkalinity. In the definition of , the alkalinity of th

master species is added to the charge for that master species to remove the equivalents for the element or

redox state that are already accounted for in the alkalinity. For example, the contribution of carbonate spe

equation 137 is zero with this definition of  ( , , ); all of the charge contri

tion of carbonate species is included in the alkalinity term of the summation.

bAlk i, ci r,
ci p,

c
e- r,

αr
r

R

∑ c
e- p,

α
p

p

P

∑+ 0=

c
e- r,

c
e- p,

Waq q,
GFWH2O
------------------------cqαq

q

Q

∑ cH2O r, αr
r

R

∑ cH2O p, αp
p

P

∑+ + 0=

GFWH2O
Waq q,

q cH2O r,
cH2O p,

δ
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m
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∑ Tz q,–=
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Isotope-Balance Equations

Geochemical mole-balance models must account for the isotopic composition as well as the chemica

composition of the final aqueous solution. In general, isotopic evolution requires solving a differential equatio

accounts for fractionation processes for precipitating solids and exsolving gases. In the development present

only the simpler case of isotopic mole balance, without fractionation, is considered. This approach is corre

aqueous mixing occurs and (or) all isotope-bearing phases dissolve, but is approximate when isotope-bearing

precipitate or exsolve. The approach does not calculate isotopic compositions of individual redox states with

aqueous phase, only net changes in isotopic composition of the aqueous phase are considered.

Mole balance for an isotope can be written as

, (138)

where  is the number of valence states of element ,  is the isotopic ratio [which may be delta not

(for example  or ),  activity in percent modern carbon, or any units that allow linear mixing] f

isotope for valence state in aqueous solution , is an uncertainty term for the isotopic ratio for a va

state in the aqueous solution,  is the isotopic ratio of element  in phase , and  is an uncertaint

for the isotopic ratio of the element in the phase.

Expanding equation 138 and neglecting the products of ’s gives the following approximation:

. (139)

Commonly, will be small relative to the concentration of the valence state or for the isotopic ratio

be small relative to the isotopic ratio itself. In either case, the products of ’s that are neglected will be sma

tive to the other terms and equation 139 will be a good approximation. The approximation in equation 139 

poor only if the concentration of the valence state and the isotopic ratio have large calculated ’s. In this ca

overall effect is that the true values of the uncertainty terms will be larger than specified uncertainty limits. 

neglected terms can be made smaller by decreasing the uncertainty limits on either the valence-state conce

or the isotopic ratios for each aqueous solution.

Relation Among pH, Alkalinity, and Total Dissolved Inorganic Carbon Uncertainty Terms

One additional equation is added for each aqueous solution to relate the uncertainty terms in pH, alk

and total dissolved inorganic carbon. Unlike all other mole-balance quantities, which are assumed to vary

independently, alkalinity, pH, and inorganic carbon are not independent. The following equation is used to rel

uncertainty terms for each of these quantities:

, (140)

where  is the alkalinity of solutionq, and  is the total inorganic carbon of solutionq. The partial deriva-

tives are evaluated numerically for each aqueous solution.
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Inequality Constraints

This formulation of the inverse problem makes sense only if the values of the ’s are small, meanin

the revised aqueous solution compositions (original plus ’s) do not deviate unreasonably from the origina

A set of inequalities places limits on the magnitudes of the ’s. The absolute value of each is constrained

less than or equal to a specified uncertainty limit, :

. (141)

Inequality constraints (equation 141) are also included for carbon(+4), alkalinity, and pH for each aqueou

tion. In addition, the mixing fractions for the initial aqueous solutions ( ) are constrained to be nonne

, (142)

and the final aqueous-solution mixing fraction is fixed to -1.0 ( ). If phases are known only to diss

or only to precipitate, the mole transfer of the phases may be constrained to be nonnegative or nonpositiv

, (143)

or

. (144)

Change of Variables

The system of equations for inverse modeling, formulated in the previous section, is nonlinear beca

includes the product of unknowns of the form , where  and  are unknowns. However, 

equations can be linearized with the substitution

. (145)

The mole-balance equations now become

. (146)

The alkalinity balance equation can be written as

. (147)

The electron-balance equation is unchanged. The charge-balance equation can be rewritten into

. (148)

The water-balance equation is unchanged. The isotope-balance equation 139 is

(149)

The relation among carbon(+4), pH, and alkalinity is
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; (150)

and lastly, the inequality constraints become

. (151)

All of these equality and inequality equations are linear in the unknowns and , and once the values of all

 and  are known, the values of the uncertainty terms  can be determined.

This formulation of the inverse-modeling problem produces a series of linear equality and inequality

constraints, which are solved with the algorithm developed by Barrodale and Roberts (1980). Their algorith

performs an L1 optimization (minimize sum of absolute values) on a set of linear equations subject to equali

inequality constraints. The problem can be posed with the following matrix equations:

.

(152)

The first matrix equation is minimized in the sense that  is a minimum, wherei is the index of

rows andj is the index for columns, subject to the equality constraints of the second matrix equation and th

quality constraints of the third matrix equation. The method will find a solution that minimizes the objective

tions ( ) or it will determine that no feasible model for the problem exists.

Initially, is set to minimize , where is a scaling factor that limits the si

of the coefficients in theA matrix;A is a diagonal matrix with elements , and . The equality constraint

( ) include all mole-balance, alkalinity-balance, charge-balance, electron-balance, and water-balan

equations and all inorganic carbon-alkalinity-pH relations. The inequality constraints ( ) include two 

qualities for each of the ’s, one for positive and one for negative (to account for the absolute values used 

formulation), an inequality relation for each mixing fraction for the aqueous solutions, which forces each m

fraction to be nonnegative, and an inequality relation for each phase that is specified to dissolve only or prec

only. Application of the optimization technique will determine whether any inverse models exist that are cons

with the constraints.

Thus, one set of mixing fractions and phase mole transfers (plus associated ’s) that satisfy the cons

may be found. Ignoring the values of the ’s and redox mole transfers ( ), let the set of nonzero  and

(mixing fractions and phase mole transfers) uniquely identify an inverse model. The magnitude of the ’s i

important in the identity of an inverse model, only the fact that the ’s are nonzero in a certain set is consi

(At this point, little significance should be placed on the exact mole transfers that are found, only that it is po

to account for the observations using the aqueous solutions and phases of the inverse model.) But could o

of aqueous solutions and phases also produce feasible inverse models? An additional algorithm is used to fi

the unique inverse models.

AssumingP phases andQ aqueous solutions, we proceed as follows: If no model is found when allQ aqueous

solutions andP phases are included in the equations, we are done and no feasible models exist. If a model is

then each of the phases in the model is sequentially removed and the remaining set of phases and aqueous
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is tested to see if other feasible models exist. If no model is found when a particular phase is removed, th

is retained in the model; otherwise, the phase is discarded. After each phase has been tested and possibly d

the phases that remain constitute a “minimal” model, that is, to obtain a feasible model none of the phases

removed. Three lists are kept during this process: each feasible model is kept in one list, each infeasible m

kept in another list, and each minimal model is kept in a third list.

Next, each combination ofP-1phases is tested for feasible models in the following way. If a trial model w

Q aqueous solutions andP-1phases is a subset of a model in the infeasible- or minimal-model list, the trial mo

is skipped because it must be either infeasible or a previously identified minimal model. If only minimal m

are to be found (-minimal in INVERSE_MODELING data block), the trial model is skipped if it is a superset o

a model in the minimal-model list. Otherwise, the inverse problem is formulated for the trial model and so

using the set of aqueous solutions and theP-1 phases in the same way as described above, maintaining the t

lists during the process. Once all sets ofP-1phases have been tested, the process continues with sets ofP-2phases,

and so on until the set containing no phases is tested or until, for the given number of phases, every trial m

either a subset of a model in the infeasible- or minimal-model list.

At this point, the entire process is repeated using each possible combination of one or more of theQ aqueous

solutions. Although the process at first appears extremely computer intensive, most sets of phases are ra

eliminated by subset and superset comparisons with models in the three lists. The number of models tha

formulated and solved by the optimization methods are relatively few. Also the process has the useful featu

if no feasible models exist, this is determined immediately when the optimization procedure is invoked the

time. ForPHREEQC, during all of the testing, whenever a feasible model is found, it is printed to the output de

or optionally, only the minimal models are printed to the output device.

An alternative formulation of the objective functions can be used to determine the range of mole trans

each aqueous solution and each phase that is consistent with the specified uncertainty limits. For the “ran

calculation (-range in INVERSE_MODELING data block), the equations for a given model are solved twice

each aqueous solution and phase in the model, once to determine the maximum value of the mixing fract

mole transfer and once to determine the minimum value of the mixing fraction or mole transfer. In these

calculations, the ’s are not minimized, but instead, the single objective function for maximization is

, (153)

and in the minimization case,

, (154)

where refers to either or , andM is a large number. By default, the value ofM is 1000. The optimization

method will try to minimize the difference between  and 1000 for maximization and between  and -100

minimization. It is possible that the mixing fraction for a solution ( ) could exceed 1000 in an evaporation

lem. In this case, the method would fail to find the true maximum for , and instead find a value closest to

This error can be remedied by choosing a larger value for . The value of  may be changed with the-range

identifier in theINVERSE_MODELING  data block.

For data input toPHREEQC, identifiers in theINVERSE_MODELING data block are used for the selection

of aqueous solutions (-solutions), uncertainty limits (-uncertainties and-balances), reactants (-phases),

mole-balance equations (-balances), range calculations (-range) and minimal models (-minimal ). 
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