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EQUATIONS FOR SPECIATION AND FORWARD MODELING

In this section of the report, the algebraic equations used to define thermodynamic activities of aqueous
species, ion-exchange species, surface-complexation species, gas-phase components, solid solutions, and pure
phases are presented. First, thermodynamic activities and mass-action equations are described for aqueous,
exchange, and surface species. Then, a set of functions, dénoted , are defined that must be solved simultaneously
to determine equilibrium for a given set of conditions. Many of these functions are derived from mole-balance
equations for each element or element valence state, exchange site, and surface site or from mass-action equations
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for pure phases and solid solutions. Additional functions are derived for alkalinity, activity of water, aqueous
charge balance, gas-phase equilibria, ionic strength, and surface-complexation equilibria. Each function is reduce
to contain a minimum number of variables, such that the number of functions equals the number of variables. The
program uses a modified Newton-Raphson method to solve the simultaneous nonlinear equations. This methoc
uses the residuals of the functions and an array of partial derivatives of each function with respect to the set of
master unknowns or master unknowns. For clarity, the set of variables used in partial differentiation are referred to
as “master unknowns”. The total derivatives of each funcfion, , will be presented without derivation. In the
following equations, lack of a subscript or the subscript “(aq)” will refer to entities in the aqueous phase, “(e)”
refers to exchangers, “(g)” refers to gases, “(s)” refers to surfaces, “(ss)” refers to solid solutions, and “(p)” refers
to phases.

Activities and Mass-Action Equations

In this section the activities of aqueous, exchange, and surface species are defined and the mass-action
relations for each species are presented. Equations are derived from the mass-action expression for the moles
each species in the chemical system in terms of the master unknowns. These equations are then differentiated wi
respect to the master unknowns. Later, these equations for the moles of a species and the partial derivatives will b
substituted into the constituent mole-balance, charge-balance, and phase-equilibria functions.

Aqueous Species

PHREEQcallows speciation or equilibration with respect to a single aqueous phase. However, multiple
agueous phases may be defined in the course of a run and an aqueous phase may be defined as a mixture of one
more aqueous phases (84X keyword in “Description of Data Input”). The dissolved species in the aqueous
phase are assumed to be in thermodynamic equilibrium, with one exception; in initial solution calculations,
disequilibrium among valence states of redox elements is allowed. The unknowns for each aqueousispecies
the activity,a;, activity coefficienty; , molalitymn, and moles in solutiom;.

PHREEQCrewrites all chemical equations in terms of master species. There is one master aqueous species
associated with each element (for example*?@ar calcium) or element valence state (for examplé*?ﬁer ferric
iron) plus the activity of the hydrogen ion, the activity of the aqueous electron, and the activity of water. Some
programs, for exampl@iNTEQA2 (Allison and others, 1990) andiNEQL* (Schecher and McAvoy, 1991) use the
term “component” for these species, but that terminology is not used here because of confusion with the definition
of component for the Gibbs’ phase rule. FBIREEQG the identity of each aqueous master species is defined with
SOLUTION_MASTER_SPECIES data block (see “Description of Data Input”). The numerical method reduces
the number of unknowns to be a minimum number of master unknowns, and iteratively refines the values of these
master unknowns until a solution to the set of algebraic equations is found. The master unknowns for agueous
solutions are the natural log of the activities of master species, the natural log of the activity cst,_yleéter, , the
ionic strengthp , and the mass of solvent water in an aqueous soWifjon,

The following relationships apply to all aqueous species (except aqueous electrons and water itself):
a = y;m andn, = miWaq . Equilibrium among aqueous species in an ion-association model requires that all
mass-action equations for aqueous species are satisfied. For example, the association reaction for the agueous
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speciesCanj ica’’ + soﬁ' = CaSCﬁ . The lol for this reaction at & is 2.3, which results in the
mass-action equation:

a
1023 = casq )

a_ ,a_ .,
ca”"'sq,

In general, mass-action equations can be written as

Ma
_ ’ _Cm,i
K, = ail_lam , )
m

wherek; is a temperature-dependent equilibrium constgptis the stoichiometric coefficient of master species

in species and Maq is the total number of aqueous master species. The valags miay be positive or negative.

For PHREEQG terms on the right-hand side of an association reaction are assigned negative coefficients and terms
on the left-hand side are assignedepositive coefficients. The same formalism applies to master species, where the
mass-action equation is simply= a_m

m
The total moles of an aqueous speciean be derived from the mass-action expression:

Maq
Cm,i
[13m
— — m
n = miWaq - KiWaq : : (3)

The Newton-Raphson method uses the total derivative of moles with respect to the master unknowns. The total
derivative is

Maq
0
dn =n|din(W_ )+ ) c., .din(a,)—=—In(y.)du|. 4
i =y din(W,) %m,. (am) o (v.)u} 4)
Activity coefficients of aqueous species are defined with the Davies equation:
J 0
logy;, = —~Az2ZL2H_ _0.3,8 (5)
i 4 Dl+ ,\/rl O
or the extended awATEQ Debye-Huckel equation:
AZ
logy; = ——O"‘bill, (6)
1+Ba .

wherez is the ionic charge of aqueous specjesidA andB are constants dependent only on temperature. Equa-
tion 6 is the extended Debye-Huckel equatiob; i§ zero, or thevATEQ Debye-Hlickel equation (see Truesdell
and Jones, 1974),li is not equal to zero. In the extended Debye-Huckel equag?on, is the ion-size parameter,
whereas in thevATEQ Debye-Huickel equatioai0 arigl are ion-specific parameters fitted from mean-salt activ-
ity-coefficient data. Unless otherwise specified in the database file or the input data set, the Davies equation is used
for charged species. For uncharged species, the first term of the activity coefficient equation is zeroyvamdghe
Debye-Huckel equation reduces to the Setchenow equétipn% b; L ) (see Langmuir, 1997 for discussion).
Unless otherwise specifield,is assumed to be 0.1 for all uncharged species.

The partial derivatives of these activity coefficient equations with respect to ionic strength are
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d 1

Zny. = -In(10)| AZH——= 0.3, 7
3 = (0 AR -0 (7)
for the Davies equation and

0 1y = _In(10)0 AZ +b 8
ou ! B/uBa+1)? 0

for the extended owATEQ Debye-Hiickel equation.

For data input t®HREEQG the chemical equation for the mole-balance and mass-action expressions, the log
K and its temperature dependence, and the activity coefficient parameters for each aqueous species are define
through theSOLUTION_SPECIES data block. Master species for elements and element valence states are
defined with theSOLUTION_MASTER_SPECIES data block. Composition of a solution is defined with the
SOLUTION or SOLUTION_SPREAD data block (see “Description of Data Input”).

Exchange Species

lon-exchange equilibria are included in the model through heterogeneous mass-action equations and
mole-balance equations for exchange sitegeeQcallows multiple exchangers, termed an “exchange
assemblage”, to exist in equilibrium with the agueous phase. The approach uses mass-action expressions based
half-reactions between aqueous species and a fictive unoccupied exchange site (Appelo and Postma, 1993) for ea
exchanger. This unoccupied exchange site is the master species for the exchanger and the log of its activity is ¢
additional master unknown. Its identity is defined ViEACHANGE_MASTER_SPECIES data block (see
“Description of Data Input”). However, the master species is not included in the mole-balance equation for the
exchanger, forcing its physical concentration to be zero. Its activity is also physically meaningless, but is such that
all of the exchange sites are filled by other exchange species.

The unknowns for exchange calculations are the actigjty, , which is defined to be the equivalent fraction
in PHREEQCtimes an activity coeﬂ‘iciems/ie ,and the moleﬁe, e, of each exchange spggies, , of exahdinger
equivalent fraction is the moles of sites occupied by an exchange species divided by the total number of exchang

be i N;

sites. The activity of an exchange specie is= y; e'T—'e , Where is the number of equivalents of
e e e 1 'e

exchangere, occupied by the exchange spedigs , apd is the total number of exchange sites for the
exchanger, in equivalents. Note thigt is the total number of equivalents of the exchanger in the system, which is
not necessarily equal to the number of equivalents per kilogram of water (eg/kgw) because the mass of water ir
the system may be more or less than 1 kg. By default, the activity coefficient for an exchange species is 1.0, bu
optionally, a Davies, extended Debye-HickelwaTeQ Debye-Huickel activity coefficient can be used, which is
based on the aqueous ionic strength and the number of equivalents of exchange sites occupied by the exchang
species.

Equilibrium among aqueous and exchange species requires that all mass-action equations for the exchang
species are satisfied. The association reaction for the exchange pagigs Ca2+ 82X = CaX, Xwhere
is the exchange master species for the default database. The use of equivalent fractions for activities and this forr
for the chemical reaction is known as the Gaines-Thomas convention (Gaines and Thomas, 1953) and is the
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convention used in the databapbseeqc.daandwateqg4f.datwhich are distributed withHREEQC [It is also
possible to use the Gapon conventioRHREEQG Which also uses equivalent fraction, but writes the exchange
reaction asO.SCa2+ +X = Ca, X . See Appelo and Postma (1993) for more discussion.] THeftogalcium
exchange in the default database file is 0.8, which results in the following mass-action equation:

a
10°8 = CaX22 . )
a_ ,.a

Ca” X
In general, mass-action equations can be written as

M
_ —Cn, ie
Ki,=a []am 10
m
wherem varies over all master species, including exchange master sacies, is the stoichiometric coefficient
" e

of master species), in the association half-reaction for exchange spégiesndK; is a half-reaction selectivity

constant. The values cfn’ i, may be positive or negativePFREEQG terms on tehe right-hand side of an associ-

ation reaction are assigned negative coefficients and terms on the left-hand side are assigned positive coefficients.
For an exchange species, the equation for the total moles of spégies

The natural log of the activity of the master species of the exchanger is a master unknown in the numerical method.
The total derivative of the moles of spedigwith respect to the master unknowns is

M 5 0
dnie = nieég Cm, iedIn(am) —Wln(yie)dp% (12)

m

For data input t®HREEQG the chemical equation for the mole-balance and mass-action expressions, the log

K and its temperature dependence, and, optionally, the activity-coefficient expression for each exchange species are
defined through thEXCHANGE_SPECIES data block. Exchange master species are defined with the
EXCHANGE_MASTER_SPECIES data block. The number of exchange sites and exchanger composition are
defined with theeXCHANGE data block (see “Description of Data Input”).

Surface Species

Surface-complexation processes are included in the model through heterogeneous mass-action equations,
mole-balance equations for surface sites, and charge-potential relations for each sudaeecallows multiple
surfaces and surface-site types, termed a “surface assemblage”, to exist in equilibrium with the aqueous phase. Two
formulations of the mass-action equations for surface species are avaikdmkERDC (1) one that includes
electrostatic potential terms and (2) another that excludes all electrostatic potential terms. If the Dzombak and Morel
(1990) model, which includes electrostatic potential terms, is used, additional equations and mass-action terms
become operational because of surface charge and surface electrostatic potential.

EQUATIONS FOR SPECIATION AND FORWARD MODELING 13



The two principle differences between the formulation of exchange reactions and surface reactions are that
exchange reactions are formulated as half-reactions, which causes the master species not to appear in any
mole-balance equations, and the exchange species are expected to be neutral. Surface reactions are not
half-reactions, so the master species is a physically real species and appears in mole-balance equations, and surf:
species may be anionic, cationic, or neutral.

The basic theory for surface-complexation reactions including electrostatic potentials is presented in
Dzombak and Morel (1990). The theory assumes that the number of activé.diéeg, the specific areég
(m?g), and the mass$; (g), of the surface are known. The two additional master unknowns are (1) the quantity,

FW,
_ DZRTE_ FW . et _ _
Inay, = In% 0~ 5p= whereF is the Faraday constant (96493.53 &), W, is the potential at sur-
0

2RT’
faces (volts)Ris the gas constant (8.3147 J finn'l), andT is temperature (Kelvin) and (2) the natural log of
the activity of the master surface species. Note that the quémily is defined with a 2 in the denominator of
the term on the right-hand side. This is a different master unknovsvn than that used in Dzombak and Morel (1990),
but produces the same results as their model because all equations are written to be consistent with this maste
unknown.

The activity of a surface species is assumed to be equal to the mole fraction of a given surface-site type tha
is occupied. In other words, a surface species is in the standard state (has activity of 1) when it completely covers
a given kind of surface site. This convention differs from Dzombak and Morel (1990) who assumed that activity
of a surface species (conceptually in the solid phase) is numerically equal to molarity (concentration in solution).
If only monodentate complexes are considered (as is done by Dzombak and Morel, 1990), terms cancel in the
mass-action equation and identical numerical results are obtained irrespective of the convention for standard stat
However, a notable difference in surface site concentration exists when the molarity convention is used for
multidentate complexes (bidentate, tridentate, and others, cf. Appelo and Postma, 1999). If a vessel contains a
solution in equilibrium with a surface containing multidentate species, and more of exactly the same solution is
added, the composition of solution and surface would change with the molarity convention. The molarity
convention is clearly not correct in this case.

“Hfo” (Hydrousferric oxide) is used in the default database files with “_w”, which indicates a low affinity
or weak site and “_s”, which indicates a high affinity or strong diteo “wOH' is used to represent a neutral
surface species at a weak site and the association reaction for the formation of a negatively charged weak site (it i
an association reaction in the sense that the defined species is on the right hand side of the equation) can be writte
as

Hfo_ wOH - Hfo wO +H". (13)
The mass-action expression, which includes the electrostatic potential term, is
. a a . i
I:fto . - Zfo_wo H e RT, (14)
— Hfo_wOH _FY
whereKi:ft0 wO' is the intrinsic equilibrium constant for the reaction,em%lT is a factor that accounts for the

work involved in moving a charged specieg)ldway from a charged surface. In general, the mass-action equa-
tion for surface specieigk is
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FY,
'“'(sk>D RT sy

Kint _
I(Sk) B 0 (sk)l_l m (15)

WhereK , is the intrinsic equilibrium constartgk) is thesurface species for surface-site tjg@veak or

strong in bzombak and Morell, 1990) in surfacen varies over all master specids, including surface master
spemes;cm i is the stoichiometric coefficient of master spatign, the association reaction for surface species
i(sk) : andAz:(Sk) is the net change in surface charge due to the formation of the surface species. The values of
Crm, o may be positive or negative. FEMREEQG terms on the right-hand side of an association reaction are
assigned negative coefficients and terms on the left-hand side are assigned positive coefficients.

For a surface species, the equation for the total moles of spgsies is
0 %, OM ¢
n =g Tsk “K T eD RT - (sl ac’“"<sk)
s~ Tleob T Tl X m
& m (16)
B T 20z, () Cm i(sk)
NN b. W, m
(8 6 m
whereTsk is the total number of a type of surface site,bg(ng is the number of surface sites bounded to the spe-
Sk
cies. The total derivative of the moles of sped:@3 with respect to the master unknowns is
M
dn. = n c..: dlna_—2Az dlnay |. 17
I(Sk) I(Sk) z m, I(Sk) m I(Sk) W, ( )
m

The second formulation of mass-action equations for surface species excludes the electrostatic potential term
in the mass-action expressiond_edlidentifier in theSURFACE data block). The equation for the moles of a
surface species is the same as equation 16, except the factor in\aaL\S/ing does not appear. Likewise, the total
derivative of the moles is the same as equation 17, except the final term is absent.

For data input teHREEQG the chemical equation for the mole-balance and mass-action expressions and the
log K and its temperature dependence of surface species are defined throBgiRIRGCE_ SPECIESdata block.
Surface master species or types of surface sites are defined WBRIEACE_ MASTER_SPECIESdata block.
The identity of the surfaces and the number of equivalents of each site type, the composition of the surface, the
specific surface area, and the mass of the surface are defined VBWRRACE data block (see “Description of
Data Input”).

Gas-Phase Components

Equilibrium between a multicomponent gas phase and the aqueous phase is modeled with heterogeneous
mass-action equations and an equation for total pressure (fixed-pressure gas phase only). Only one gas phase can
exist in equilibrium with the aqueous phase, but the gas phase may contain multiple components. All gas
components are assumed to behave ideally and the gas phase is assumed to be an ideal mixture of gas components.

If a gas phase is specified to have a fixed volume, then the pressure in the gas volume will vary with reaction
extent, but each gas component will always be present in the gas phase. For a fixed-volume gas phase, no additional
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master unknowns are needed, and the moles of a component in the gas phase can be calculated from the activiti
of the aqueous master species.

If a gas phase is specified to have a fixed pressure, the gas phase is a fixed-pressure bubble that will vary i
volume with reaction extent. If the sum of the partial pressures of the component gases is less than the specifie
total pressure, the fixed-pressure gas phase will not exist and none of the gas components will be present in the gz
phase. For a fixed-pressure gas phase, one additional master unknown is included in the equations, which is th
total moles of gas components in the gas phdgg,

By the assumption of ideality, the fugacity (activity) of a gas component is equal to its partial pressure.
PHREEQcuses dissolution equations, in the sense that the gas component is assumed to be on the left-hand side
the chemical reaction. For carbon dioxide, the dissolution reaction may be written as

COyy = COyg- (18)

The Henry's law constant relates the partial pressure of the gas component (numerically equal to fugacity for
ideal gases) to the activity of aqueous species. For carbon dioxide, the Henry’s law constarft&[fdlowing
the ideal gas assumption, units are atmospheres (atm)], and the following mass-action equation applies at equilit
rium:

1468,
Pco, =107 "acq, (19)
WherePCO2 is the partial pressure (atm) calculated using activities in the aqueous phase. In general, the partial
pressure of a gas component may be written in terms of aqueous phase activities as

g e
_— Cm. g
Pe = i |_| an’, (20)
g m
wherePg is the partial pressure of gas compoggecdliculated using activities in the aqueous phbi%e; is the
Henry’s law constant for the gas component; e,ng is the stoichiometric coefficient of aqueous master spe-

cies,m, in the dissolution equation. The values;:mc 9 may be positive or negativedREEQG terms on the
left-hand side of a dissolution reaction are assigned negative coefficients and terms on the right-hand side are
assigned positive coefficients.
For a fixed-volume gas phase, the total volume of the gas phase is specifi®f}, {9, et the pressure of
the gas phase is variable. At equilibrium, the number of moles of a gas component inrt@e gas is calculated a
V

P
_ Vtotal _ total Cr, )
T TRT T RTK, Z m (21)

The total derivative of the moles of a gas component in the gas phase is

Maq

Y,
_ total
= 2 NgCrm, gdlna (22)

For a fixed-pressure gas phase, the total pressure is specRigg abut the volume of the gas phase is
variable. At equilibrium, the number of moles of a gas component in the gas phase is equal to the fraction of the
total pressure for the gas times the total moles of gas in the gas phase:
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P N 2
n, =N 9 = _9% Mg (23)
g gasptotal

The total derivative of the moles of a gas component in the gas phase is

P Mag

— g

dn, = 5 dNgast Z NgCm, gdINan- (24)
total m

For data input t®’HREEQG the mass-action equations, Henry's law constant, and temperature dependence of
the constant are defined with tRéIASESdata block. The type of gas phase (fixed-volume or fixed-pressure), the
components to include in gas-phase calculations, and initial gas-phase composition are defined with the
GAS_PHASE data block (see “Description of Data Input”).

Equations for the Newton-Raphson Method

A series of functions, denoted Iby , are used to describe heterogeneous equilibrium. These equations are
derived primarily by substituting the equations for the moles of species (derived from mass-action equations in the
previous section) into mole- and charge-balance equations. When equilibrium is satisfied, all of the functions
relevant to a specific equilibrium calculation are equal to zero. The zeros of the functions are found by the
Newton-Raphson method, by which each function is differentiated with respect to each master unknown to form the
Jacobian matrix. A set of linear equations is formed from the Jacobian matrix that can be solved to approximate a
solution to the nonlinear equations. By iteratively solving successive sets of linear equations, a solution to the
nonlinear equations can be found. Each ofthe functions that is used in the numerical method is presented in this
section along with the total derivative with respect to the master unknowns that is used to form the Jacobian matrix.

Activity of Water

The activity of water is calculated from an approximation that is based on Raoult’s law (Garrels and Christ,
1965, p. 65-66):

Naq
n.
— |
aHzo = 1-0.017 E \N—aq (25)
|

The functioan o is defined as
2
Naq

I
and the total derivative of this function is

Nagq

dfiy 0 = Wageh,o0dN(ay o) + (@ 0~ DW,din(W,,) +0'017Z dn;. (27)
i

The master unknown is the natural log of the activity of whtar_lzo
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lonic Strength
The ionic strength of the aqueous solution is a master unknown and is defined as

Py

2

n=ig2 (28)
22.1W,,

|
The functionf u is defined as
1Naq
2
fu =Waq“_ézzi N, (29)
i

and the total derivative of this function is
1Naq
2
df, = pW,dIn(W,) +Waqdu—§Z Z dn;. (30)
i

Equilibrium with a Fixed-Volume Multicomponent Gas Phase

For a fixed-volume gas phase, the moles of each gas component can be calculated from the activities of the
aqueous master species, and the numerical model treats the gas phase components in the same way that it tre
aqueous species. The terms for the moles of each gas compogeapipear in the mole-balance equations for
elements and the termts);  appear in the Jacobian matrix for the mole-balance equations. No additional equatio
labeledf is required to calculate equilibrium with the fixed-volume gas phase.

For data input teHREEQG the mass-action equations, Henry’s law constant, and temperature dependence of
the constant are defined with tREIASESdata block. The type of gas phase (fixed-volume or fixed-pressure), the
components to include in gas-phase calculations, and initial gas-phase composition are defined with the
GAS_PHASE data block (see “Description of Data Input”).

Equilibrium with a Fixed-Pressure Multicomponent Gas Phase

For a fixed-volume gas phase, the number of moles of each gas component is calculated from the activities
of the aqueous master species and the total moles of gas components in the gadypiiseerms for the moles
of each gas components, appear in the mole-balance equations for elements and thedaéms appear in the
Jacobian matrix for the mole-balance equations. Equilibrium between a fixed-pressure multicomponent gas phas
and the aqueous phase requires one new equation--the sum of the partial pressures of the component gases is eg

to the total pressur@,,. The functionfPt " is defined as
NQ

me[al = I:)total - z Pg 1 (31)
g

WhereNg is the total number of gas components in the gas phase.

The total derivative off Pl with respect to the master unknowns, with the convention that piijtjye
are increases in solution concentration, is
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Ng Maq
dfp = —Z Z Cm, gPgdINan,. (32)
g m

For data input t®’HREEQG the mass-action equations, Henry's law constant, and temperature dependence of
the constant are defined with tRéllASES data block. The type of gas phase (fixed-volume or fixed-pressure), the
components to include in gas-phase calculations, and initial gas-phase composition are defined with the
GAS_PHASE data block (see “Description of Data Input”).

Equilibrium with Pure Phases

Equilibrium between the aqueous phase and pure phases, including gases with fixed partial pressures, is
included in the model through heterogeneous mass-action equatisEeQcallows multiple pure phases, termed
a pure-phase assemblage, to exist in equilibrium with the aqueous phase, subject to the limitations of the Gibbs’
Phase Rule. The activity of a pure phase is assumed to be identically 1.0. The additional master unknown for each
pure phase is the moles of the pure phase that is present in the systenerep refers to the;:)th phase. Terms
representing the changes in the moles of each pure phase occur in the mole-balance equations forelraEptS.
also allows a calculation where equilibrium with a pure phase is produced by adding or removing a specified reactant
(alternative formulaandalternative phasén EQUILIBRIUM_PHASES data block); the mole transfer of the
reactant that is necessary to produce equilibrium with the pure phase is calculated. In this type of calculation, the
terms in the mole-balance equations are derived from the stoichiometry of the reactant rather than the stoichiometry
of the pure phase, and the unknown is the number of moles of reactant that enter or leave solution.

The new function corresponding to each of the new unknowns is a mass-action expression for each pure phase.
PHREEQcuses dissolution reactions, in the sense that the pure phase is on the left-hand side of the chemical equation.
For calcite, the dissolution reaction may be written as

cacg, = ca™ +Co5, (33)
and, using loK of 10848 and activity of the pure solid of 1.0, the resulting mass-action expression is
_ . ~848 _

Kcalcite =10 - aCa2+aCO§" (34)
In general, pure-phase equilibria can be represented with the following equation:

Maq

Crm,

KID = |_|am . (35)

m
wherec,, D is the stoichiometric coefficient of master speuigsthe dissolution reaction. The valuescgf o

may be positive or negative. FBREEQG terms on the left-hand side of a dissolution reaction are assigned nega-
tive coefficients and terms on the right-hand side are assigned positive coefficients. The saturation index for the
mineral,SIp, is defined to be

Maq
Crn,
Sl = Iogl_lam P (36)
m
The function used for phase equilibrium in the numerical method is
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Magq

fp = (INK,+[IN(10)IS1, 1arged = D Cm JN(ER), (37)

whereSIp target is the target saturation index for the phase,lag#0) converts base-10 log to natural log. The
target saturation index is specified by the user; a positive, zero, or negative value specifies supersaturation, equ
librium, or undersaturation for the mineral with respect to the solution. For fixed-partial-pressure gas component,
Slp’ target is equivalent to the log of the partial pressure of the gas component. The total derivative with respect
to the master unknowns is

Maq
df, = —Z Cr, pdlnap,. (38)

For data input t’HREEQG the mass-action equations, equilibrium constant, and temperature dependence of
the constant for a pure phase are defined witPHW®SES data block. Initial composition of a pure-phase
assemblage and target saturation indices are defined wHQHH IBRIUM_PHASES data block.

Equilibrium with Solid Solutions

Modeling of ideal, multicomponent or nonideal, binary solid solutions is based on the work of Glynn (Glynn
and Reardon, 1990; Glynn and others, 1990; Glynn, 1991; Glynn and Parkhurst, 1992). Equilibrium between the
agueous phase and solid solutions is included in the model through heterogeneous mass-action egegtquas.
allows multiple solid solutions, termed a solid-solution assemblage, to exist in equilibrium with the aqueous phase,
subject to the limitations of the Gibbs’ Phase Rule. Modeling of nonideal solid solutions is limited to
two-component (binary) solid solutions; ideal solid solutions may have two or more components. The additional
master unknowns for solid solutions are the moles of each component in each solid sm)‘l) ution ssubferns
to solid solutionss Terms representing the changes in the moles of each component occur in the Jacobian matrix
of the mole-balance equations for elements.

Unlike pure phases, the activity of a component in a solid solution is not identically 1.0. The activity of a
component is defined to tmp = A, X whetg is the mole fraction of compgniarthe solid solution

pSS pSS
s§ and)\ is the activity coefﬁment The mole fraction of a component in a solid solution is defined as

n
Pss

Pss N '
> M.
pSS: 1
activity coefficient is 1.0; for nonideal, binary solid solutions, the activity coefficients for the components are
defined with the Guggenheim expressions:

whereN is the number of components in solid solw®Ffror ideal solid solutions, the

Ay = exp((ag—a,(4x, —1))x5) and (39)

A, = exp((ag+a, (4%, —1))X5), (40)

whereA; and\, are the activity coefficients of components 1 and 3and a, and are nondimensional
Guggenheim parameters. The nondimensional parameters are calculated from dimensional parameters for the
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excess free enerqy, agd  (kJ/mol) by the equatla(gls= —gﬂ agre == . The paraagetersa; and

for the excess free energy may be defined directly or by a varlety of means including the mole fractions of compo-
nent 2 delimiting the miscibility gap, the mole fractions of component 2 delimiting the spinodal gap, the mole frac-
tion of component 2 at the critical point and the critical temperature, Thompson and Waldbaum parameters,
Margules parameters, mole fraction of component 2 and the log of the total solubility product of an alyotropic
point, solid-phase activity coefficients for trace concentrations of component 1 and component 2, or two distribu-
tion coefficients for component 2 (Glynn, 1991).

The new function corresponding to each of the new unknowns is a mass-action expression for each
componentin each solid soluticPHREEQCuses dissolution reactions, in the sense that the solid-solution component
is on the left-hand side of the chemical equation. For aragonite in an aragonite-strontianite solid solution, the
dissolution reaction may be written as

caco, = ca " +Coj, (41)
and, using lok of 108-34and activity coefficient for the solid, the resulting mass-action expression is
a 2+a~ a 2+a
K prag = 107834 = cacol _ ca coy . (42)
g a
Arag O nArag 0

0
Ara
gl:nArag +Nsirondd

In general, solid-solution phase equilibria can be represented with the following equation for each component:

Maq

cm‘ pSS
am
— M
“o. T @ “
pSS
WhereKP is the equilibrium constant of componpmi pure form, ancc, m p. is the stoichiometric coefficient of
master species in the dissolution reaction for compongmin solid solutlonss The values ot may be pos-

itive or negative. FOPHREEQG terms on the left-hand side of a phase dissolution reaction are assigned negative
coefficients and terms on the right-hand side are assigned positive coefficients. The solubility quotient for a compo-
nent of the solid solution is defined to be

M
- Cm, Pss
m
— _m
sts ) Kpssapss , (44)

whereQ, is equal to 1 and Qp is equal to O at equilibrium. The functions used in the numerical method for
each component of a nonideal, binary solid solution are

Mag ny
f,= zcm1Inam—InKl—Innl+nz—ln)\1 and (45)
Ny
f, = Zcmyzlnam—InKz—Innl*_nz—ln}\z. (46)
m
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The total derivative with respect to the master unknowns is
M

ad O X 2ax 6ax+12axD
Zcmldlna +[-)——2+ 02 172 12[dnl
OMm ny+ny
2 2a,%>+6 18a,x5 + 12a,% +1
—28pX, T 280Xy + 08, Xy —1oay X, + Laay X, +
dn, (47)
and
Maq — 23X, + 2aGx3—6a, X, + 18a,X3 — 12a1x§’ +1
df, = ZCm,ZdInam+ 7 dn, +
1712
m
0 X, 2a,%x2+ 6a,x2—12a,x30
EI P 171 11EDInz . (48)
O n ny+n; O
The function used in the numerical method for each component of an ideal solid solution is
Cm szI
DZ an
0Ny O
fp, =INQ, = InB—D—In =il (49)
s s u KpSs U totall]
[l 1l
0 0

whereN, ;. = Z n. andjg, ranges over all the components in solid solsgidrhe total derivative with

JSS

respect to the master unknowns is

Maq 1 [Nt t |_n 0 Nssjss;t Pss
ota P,
df . = S, . dna,——OF—————T0n_ + dn. . (50)
Pss % m, Bss m p. Niotal O Pss Z Niotal Iss

Iss

For data input t’HREEQG the mass-action equations, equilibrium constant, and temperature dependence of
the constant for each pure phase are defined witPHWSES data block. Initial composition of a solid-solution
assemblage and Guggenheim parameters for nonideal solid solutions are defined 8@hiibeSOLUTIONS
data block (see “Description of Data Input”).

Mole Balance for Surface Sites

Mole balance for a surface site is a special case of the general mole-balance equation. The surface
assemblage is a set of one or more surfaces, each of which may have one or more site types. The total numbei
moles of a surface site type is specified by input to be one of the following: (1) fixed, (2) proportional to the moles
of a pure phase, or (3) proportional to the moles of a kinetic reactant. The sum of the moles of surface sites occupiel
by the surface species of a site type must equal the total moles of that surface site type. The following function is
derived from the mole-balance relation for a surface sitedype  of swface
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Sk
fo =To—VYb.: n 51
Sk Sk Z S I(sk) I(sk) ( )
I(s)
where the value of the functioﬁSk is zero when mole balance is achié'\gkad, is the moles of the surface site type,
NSk is the number of surface species for the site typebgKnl((j ) is the number of surface sites occupied by the
.. L . TS
surface speciegg ) . The total denva'uvefglc is
NS
k
d fSk = ATsk—Z bsk, i(sk)dni(skf (52)
Is)
If the total number of sites is proportional to the moles of a pure phaseAﬂigan —Cs, pd n, , mggq;e
is the moles of surface sites per mole of plpaskthe phase dissolves, thelrmID is positive and the number of
surface sites decreases. If the total number of sites is proportional to the moles of a kinetic télésgtmt) in

the total derivative equation. The change in the number of sites is included as part of the reaction that is integrated
with the rate equations and no term is included in the Jacobian matrix. As the kinetic reaction increases or decreases
the moles of reactant, the number of surface sites is adjusted proportionately. If the number of surface sites is fixed,
ATSk = 0.

For data input teHREEQG the number of moles of each type of surface site is defined wiBIUREACE
data block and may be a fixed quantity or it may be related to the moles of a pure phase or a kinetic reactant. Surface
site types are defined with ts&JRFACE_MASTER_SPECIESdata block and surface species are defined with
the SURFACE_SPECIESdata block (see “Description of Data Input”).

Mole Balance for Exchange Sites

Mole balance for an exchange site is a special case of the general mole-balance equation. The total number of
moles of an exchange site is specified by input to be one of the following: (1) fixed, (2) proportional to the moles of
a pure phase, or (3) proportional to the moles of a kinetic reactant. The sum of the moles of sites occupied by
exchange species must equal the total moles of the exchange site. The following function is derived from the
mole-balance relation for an exchange site:

NE‘
fe = Te_zbe, i, (53)
ie

where the value of the functidgis zero when mole balance is achievégis the total moles of exchange sites for
exchangee ,andy, ; isthe number of exchange sites occupied by the exchange species. The total defivative of
is

Ne
dfy = ATe—Zbe' ied”ie' (54)
ie

If the total number of sites is proportional to the moles of a pure phase Afigr= —Cg, IOd n, : m@%re
is the moles of exchange sites per mole of ppaHdhe phase dissolves, thelrmp is positive and the number of

exchange sites decreases. If the total number of sites is proportional to the moles of a kinetic lagtan®) in
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the total derivative equation. The change in the number of sites is included as part of the reaction that is integratec
with the rate equations and no term is included in the Jacobian matrix. As the kinetic reaction increases or decrease
the moles of the reactant, the number of exchange sites is adjusted proportionately. If the number of exchange site
is fixed, AT, = 0.

For data input t’HREEQG the moles of exchange sites are defined irBKEHANGE data block and may
be a fixed quantity or it may be related to the moles of a pure phase or a kinetic reactant. Exchanger sites are define
with theEXCHANGE_MASTER_SPECIES data block and exchange species are defined with the
EXCHANGE_SPECIES data block (see “Description of Data Input”).

Mole Balance for Alkalinity

The mole-balance equation for alkalinity is used only in speciation calculations and in inverse modeling.
Mole balance for alkalinity is a special case of the general mole-balance equation where the coefficients are define
by the alkalinity contribution of each aqueous species. Alkalinity is defined as an elerrerEBRQCand a master
species is associated with this element S&@:UTION_MASTER_SPECIES keyword in “Description of Data
Input”). In the default databases feHREEQG the master species for alkalinityﬁsog' . The master unknown for
alkalinity isIna,,, , or for the default databasdasacog_

The total number of equivalents of alkalinity is specified by input to the model. The sum of the alkalinity
contribution of each aqueous species must equal the total number of equivalents of alkalinity. The following

function is derived from the alkalinity-balance equation:

Nagq

Faik = Tak=D Pai i (55)
i

where the value of the functidgy is zero when mole balance is achievEgy is the number of equivalents of
alkalinity in solution, and,,, ; is the alkalinity contribution of the aqueous speeegmol). The total deriva-
tive of fa) IS

Nag
dfaie = =) Payidn;- (56)
i

The value ofT 5, must be positive, provided a carbonate species is the master species for alkalinity.
Conceptually, a measured alkalinity differs from the alkalinity calculateeHREEQC In the default database files
for PHREEQCthe values obA”(' i have been chosen such that the referencet.lbs/g\rﬁg,e| =0 ) for each element or
element valence state is the predominant species at a pH of 4.5. It is assumed that all of the element or elemen
valence state is converted to this predominant species in an alkalinity titration. However, significant concentrations
of aqueous species that are not in the reference state (that is species that have nonzero alkalinity contributions) me
exist at the endpoint of a titration, and the extent to which this occurs causes the alkalinity calcuktedbyc
to be a different quantity than the measured alkalinity. Hydroxide complexes of iron and aluminum are the most
common examples of species that may not be converted to the defined reference state. Thus, the alkalinity of a
solution as calculated BHREEQG though it will be numerically equal to the measured alkalinity, is an
approximation because of the assumption that a titration totally converts elements and element valence states t
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their reference state. In most solutions, where the alkalinity is derived predominantly from carbonate species, the
approximation is valid.

For data input teHREEQG the alkalinity of each species is calculated from the association reaction for the
species, which is defined in tBOLUTION_SPECIES data block, and the alkalinity contributions of the master
species, which are defined with te®@LUTION_MASTER_SPECIES data block. Total alkalinity is part of the
solution composition defined with tlEBOLUTION or SOLUTION_SPREAD data block (see “Description of Data
Input”).

Mole Balance for Elements

The total moles of an element in the system are the sum of the moles initially present in the pure-phase and
solid-solution assemblages, aqueous phase, exchange assemblage, surface assemblage, gas phase, and diffuse layers
of the surfaces. The following function is the general mole-balance equation:

0 Np SsNSS D Naq E Ne
%rm zbmp p zzbm pSS psgj zbml i zzbm,ienie_
N P SS Pes i
: (57)
Kg Ns, S Ngq

S
%% b”"(sk) (s Z m, g Zmeu is

I(s)

where the value of the functidp, is zero when mole-balance is achiev&gl,is the total moles of the element in the
systemN, is the number of phases in the pure-phase assemBlaigethe number of solid solutions in the
solid-solution assemblaghssis the number of components in solid solutEgN,q is the number of aqueous spe-
cies,E is the number of exchangers in the exchange assemblgigehe number of exchange species for

exchange site, Sis the number of surfaces in the surface assembiage, is the number of surface types for sur-
faces, N is the number of surface species for surface ype Ngmithe number of gas-phase components.

The moles of each entity in the system are representegifoy phases in the pure-phase assembla e, for
components in a solid solution,for aqueous speC|eBre for the exchange species of exchangenglte for

surface species for surface site tyge ng for the gas components, ang s foraqueous speciesin the diffuse layer
of surfaces. The moles of elememnh per mole of each entity are representedpywith an additional subscript to
define the relevant entityy,,  is usually, but not always, equal {o (the coefficient of the master speti@s for
the mass-action equation).

To avoid solving for small differences between large numbers, the quantity in parenthesis in equation 57 is not
explicitly included in the solution algorithm and the valuel of is never actually calculated. Instead the quantity

N, SSNg
T =Th— me, o~ Z zbm, alp.. is used in the functioi , . Initially, T is calculated from the total
p SS pSS

moles ofm in the aqueous phase, the exchange assemblage, the surface assemblage, the gas phase, and the surface
diffuse layers:
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E Ne S Naq
Tm = mey i ZZ m, i\ +ZZZ M. ity gy me 9”9+Zzbm iMi,s: (58)
e S i

i S kl(s)

During the iterative solution to the equation'ﬁm is updated by the mole transfers of the pure phases and com
ponents of the solid solutions:

. Np SSNss
m _ *-m
Teeg = T+ z by pdNy, + z me, el (59)
p SS pSS

wherek refers to the iteration number. It is possible by, to be negative in intermediate iterations, but it must
be positive when equilibrium is attained.

The total derivative of the functidp, is

Np SSNss
=_zbmp Zzbm pSS me ICIn zzbml
SS Pgs
s K Ns, S Ny (60)
_ZZZ m, '(sk) I(Sk) me gdng z zbm dn;

S kl(s)

For data input teHREEQG total moles of elements are initially defined for an aqueous phase with the
SOLUTION or SOLUTION_SPREAD data block, for an exchange assemblage witleX@HANGE data
block, for a surface assemblage with 8ldRFACE data block, for the gas phase witic&S_PHASEdata block.
The moles of each phase in a pure-phase assemblage are defined wifithdBRIUM_PHASES data block.
The moles of each component in each solid solution in a solid-solution assemblage are defined with the
SOLID_SOLUTIONS data block. Total moles of elements may also be modified by batch-reaction and transport
calculations (see “Description of Data Input”).

Aqueous Charge Balance

The charge-balance equation sums the equivalents of aqueous cations and anions and, in some cases, tr
charge imbalances developed on surfaces and exchangers. When specified, a charge-balance equation is usec
initial solution calculations to adjust the pH or the activity of a master species (and consequently the total
concentration of an element or element valence state) to produce electroneutrality in the solution. The
charge-balance equation is necessary to calculate pH in batch reactions and transport simulations.

In real solutions, the sum of the equivalents of anions and cations must be zero. However, analytical error:
and unanalyzed constituents in chemical analyses generally cause electrical imbalances to be calculated for
solutions. If a charge imbalance is calculated for an initial solution, the pH is adjusted in subsequent batch reaction:
or transport simulations to maintain the same charge imbalance. If mixing is performed, the charge imbalance for
the batch-reaction step is the sum of the charge imbalances of each solution weighted by its mixing factor. If a
surface is used in a simulation and the explicit diffuse-layer calculation is not specified, then the formation of
charged surface species will result in a surface charge imbalance. Similarly, if exchange species are not electricall)
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neutral (all exchange species in the default databases are electrically neutral), the exchanger will accumulate a
charge. The charge imbalances of surfaces and exchangers are included in the general charge-balance equation.

The charge imbalance for a solution is calculated in each initial solution calculation, in each batch-reaction
step, and for each cell during each time step of transport simulations with the equation:

q= zzini, (61)

whereq identifies the aqueous phaé'ezz q is the charge imbalance for aqueous, imazeis the charge on
agueous speciaslf charged surfaces or exchangers are not present, the charge imbalance for a solution at the end
of a batch-reaction or transport simulation will be the same as at the beginning of the simulation.

The charge imbalance on a surface is calculated in the initial surface-composition calculation, in each
batch-reaction step, and for each cell during each time step of transport simulations with the equation:

Z z IS '(sk) z 4M s (62)
K ity
WhereTZ s isthe charge imbalance for the surfaq:e is the charge on the surface ispesigface types, of
surfaces, and the final term in the equation represents the charge accumulated in the diffuse layer. The final termis
used only if the diffuse-layer composition is explicitly included in the calculatihfiuse_layerin the SUR-
FACE data block). When the diffuse-layer composition is calculated explicitly, it is required that all solutions be
charge balanced, ar@, s Willalways be equal to zero.

Normally, exchange species have no net charge, but for generality, this is not required. However, the activity
of exchange species (the equivalent fraction) is not well defined if the sum of the charged species is not equal to the
total number of equivalents of exchange sites (exchange capacity). If charged exchange species exist, then the charge
imbalance on an exchanger is calculated in the initial exchange-composition calculation, in each batch-reaction step,
and for each cell during each time step of transport simulations with the equation:

e~ zezienie’ (63)

WhereTZ’ o Isthe charge imbalance for the exchanger,zeend is the charge on the exchange cbexianger
e

The charge imbalance for the system is defined at the beginning of each batch-reaction step and for each cell
at the beginning of each time step in transport simulations to be:

Q E
= zo‘qu, qt ZTZ- ot ZTZ’ o (64)
q s e
whereT, is the charge imbalance for the syst@ns, the number of aqueous phases that are mixed in the
batch-reaction step or in the cell for a transport step, is the mixing fraction for aqueousjpSasthe number

of surfaces, an#t is the number of exchangers.
The charge-balance function is
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wheref, is zero when charge balance has been achieved. If the diffuse-layer composition is explicitly calculated,
a separate charge-balance equation is included for each surface and the sum of the terms in the parentheses will
zero when surface charge balance is achieved. If the diffuse-layer composition is not calculated, the second teri
inside the parentheses is zero. The total derivativie,of  is

S Kg N E N,
df, = —szn —gzlz I(sk) I(sk) %iZZiednie, (66)
() e

where the triple summation for surfaces is present only if the diffuse-layer composition is not explicitly calcu-
lated.

For data input teHREEQG charge imbalance is defined by data inpuSOLUTION or
SOLUTION_SPREAD, EXCHANGE , andSURFACE data blocks combined with speciation, initial
exchange-composition, and initial surface-composition calculations. The charge on a species is defined in the
balanced chemical reaction that defines the specie®IitJTION_SPECIES, EXCHANGE_SPECIES, or
SURFACE_SPECIESdata blocks (see “Description of Data Input”).

Surface Charge-Potential Equation with No Explicit Calculation of the Diffuse-Layer Composition

By default,PHREEQcuses the approach described by Dzombak and Morel (1990) to relate the charge density
on the surfaceg, , with the potential at the surfé#g, . The surface-charge density is the amount of charge pe
area of surface material, which can be calculated from the distribution of surface species:

ZZ it sy (67)

(S)

surf

whereao, is the charge density for surfage coulombs per square meter (@)m: is the Faraday constant in
coulombs per mole (96,493.5 C/mol)yis the surface area of the materialqniThe surface area is calculated
by one of the following formulas: (17, = AS; , whergis the specific area of the surface materia?/gm
andS is the mass of surface material (g), or,e%er An, , Wiens the surface area per mole of a pure
phase or kinetic reactant ffmol), andn, is the moles of the pure phase or reactant. A€28he surface-charge
density is related to the electrical potential at the surface by:

1

= (800(}:aORT) u smhg)ZRTD, (68)

Wheres is the dielectric constant of water (78.5, dimensionlegs),  is the permittivity of free space (8:854x10

cvimlor C¥m- -J),v is the ionic charge of a symmetric electroly®és the gas constant (8.314 J mdk™Y), T

is temperature (K)i is the ionic strength, %d;the Faraday constant (JJ\Eq or C/mol), W is the potential

at the surface in volts. At 26, (800(}:£ORT) = 0.1174. The charge of the electrolyte ions is assumed to be 1.
The charge-potential function is
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and the total derivative of this function is
1

2 1 11
(800Cee,RT)” -5 Fug 2.2 %ws
dfqJS = M sthE—R—ngpHSOO@sORT) H~cos —-Fﬁ%ilnaws—
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(S)

surf

For data input teHREEQG calculation without an explicit diffuse layer is the default. Specific surface area
(Ag or A, ) and mass of surfac&( ) are defined in8¢RFACE data block. The moles of surface sites are defined
(1) in theSURFACE data block if the number of sites is fixed, (2) by a proportionality factor i H&FACE data
block and the moles of a phaseBQUILIBRIUM_PHASES data block, or (3) by a proportionality factor in the
SURFACE data block and the moles of a kinetic reactarKiNETICS data block. The charge on a surface species
is specified in the balanced chemical reaction that defines the specieSURIACE_SPECIESdata block (see
“Description of Data Input”).

Surface Charge-Balance Equation with Explicit Calculation of the Diffuse-Layer Composition

As an alternative to the previous model for the surface charge-potential relatiREEQCOptionally will use
the approach developed by Borkovec and Westall (1983). Their development solves the Poisson-Boltzmann
equation to determine surface excesses of ions in the diffuse layer at the oxide-electrolyte interface. Throughout the
derivation that follows, it is assumed that a volume of one liter (L) contains 1 kg of water.

The surface excess is:
= J (Ci,s(x) —¢;)dx, (71)
d, s

Wherel'i’ is the surface excess in mof of aqueous specié®n surfacss, X4 s is the location of the outer
Helmholtz planeg; ((x) is concentration as a function of distance from the surface in ﬁ)@irrdc is the con-
centration in the bqu solution. The surface excess is related to concentration in the reference state of 1.0 kg of
water by

m.=A

i,s surfri,s'

(72)

wherem; ¢ is the surface excess of agueous speaesioles per kilogram water (mol/kgw). This surface-excess
concentration can be related to the concentration in the bulk solution by
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Mis = Gi,sM» (73)

whereg; . is a function of the potential at the surface and the concentrations and charges of all ions in the bulk
solution:

| e (K-
9is = Asurfs'gn(xd, s_l)a J Naq 1/2dx ! (74)
[xzz my (X" - 1)}
Ry, |
whereX = e "' Xq ¢ IS the value of at the outer Helmholtz plandg,is the surface area @n

S|gn(XOI s—1)is+1or-1depending on the sign of the term in parenthesetie aqueous species for which the
surface excess is being calculatgds the charge on aqueous speci¢sanges over all aqueous speciesis the

molality andz is the charge of aqueous spetjemnda = (ssoRT/Z)l/2 .Thevalue ofi at 26 is

0.02931 (L/mol}/2 C m2. The relation between the unknowf) (ised by Borkovec and Westall (1983) and the

master unknown used IPHREEQCIS ay_= X

The development of Borkovec and Westall (1983) calculates only the total excess concentration in the diffuse
layer of each aqueous species. A problem arises in batch-reaction and transport modeling when a solution is
removed from the surface, for example, in an advection simulation when the water in one cell advects into the next
cell. In this case, the total moles that remain with the surface need to be kneWwREHDG an arbitrary
assumption is made that the diffuse layer is a specified thickness and that all of the surface excess resides in th
diffuse layer. The total moles of an aqueous species in the diffuse layer are then the sum of the contributions from
the surface excess plus the bulk solution in the diffuse layer:

n n; n.

— - 1 [
r‘i,s - r‘i,s, excess+ r'i,s, aq ~ Wbulkgi,swaq-"w W Dgl sn WSWaq, (75)
wherenI s, aq refers to the moles of aqueous spencihat are present in the diffuse layer due to the contribution
from the bulk solutionn, ¢ ., ..ss refersto the surface exc&ygq is the mass of water in the system excluding
the diffuse layerW, is the mass of water in the diffuse layer of susfdices assumed that the amount of water
in the aqueous phase is much greater than in the diffuse layers, sunrbmgﬂ]waq , (In version 1,

S

Whuik = Waqt ZWS). The mass of water in the diffuse layer is calculated from the thickness of the diffuse
S

layer and the surface area, assuming 1 L contains 1 kg water:
W, = tA (76)

S surf’

wheret, is the thickness of the diffuse layer in meters. If the moles of surface sites are related to the moles of
pure phase or kinetic reactant, they), ; = AN, , othervhigg, ¢ is constant and calculated from the specific
area and the mass of the surface that are specified on input. According to electrostatic theory, the thickness of th
diffuse layer should be greater at low ionic strength and smaller at high ionic strength. The default value used in
PHREEQCfor the thickness of the diffuse layer is 15818, which is approximately the thickness calculated by
Debye theory for an ionic strength of 0.001 molal. For ionic strength 0.00001, the Debye length of the diffuse
layer is calculated to be 1xTm. The assumption that the amount of water in the diffuse layer is small will be
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invalid if the surface area is sufficiently large; for a thickness of 1% a surface area of 1000%mesults in a dif-
fuse-layer volume of 0.1 L, which is a significant portion of 1 L of bulk solution.
The total derivative of the moles of an aqueous species in the diffuse layer is

W, [ dg £ W, tA,
l, SD RT
[g, <t W, Edn +nIax T2e EplnaqJ i dInW +n|W—dn (77)
aql] 0 aq
where the second term is the partial derivative with respect to the master unknown for the potential at the surface,

Inaq, , and the last term is present %ﬂy if the number of surface sites is related to the moles of a pure phase or

kmetlc reactant. The partial derlvatlv&—( , is equal to the integrand from equation 74 evalt)q;eg at
Z
agi s . (Xdl s_]‘)
X y = AgyrfSign(Xy, s—1)a Nag /2 (78)
.S 2 Z
d Xg, sy M(Xq s 1)}
|

and the partial derivative of the functigh,  with respect to the master unknown is

F¥si?

EFqJSEI 0 Z;
0% s 09 <5 . BRI O 5 GrTo O (Xd s—1)
dlnay,_~ oX EZ E —AsurSIgn(Xy s 1)0‘%(9 12 (79)
Xd Zm,(xOI S 1)}
In the numerical method, it is computationally expensive to calculate the fungiqns , S0 the same approach

as Borkovec and Westall (1983) is use@HREEQCtO reduce the number of function evaluations. A new level of
iterations is added when the diffuse layer is explicitly included in the calculations. The functions and their partial
derivatives are explicitly evaluated once at the beginning of each of these diffuse-layer iterations. During the model
iterations, which occur within the diffuse-layer iterations, the values of the functions are updated using the following
equation:

dg;
k+1 _ k+9

i,s gi,s dln dlnaw, (80)

wherek is the model |teration number agﬂs is the value that is evaluated explicitly at the beginning of the dif-
fuse-layer iteration. The model iterations end when the Newton-Raphson method has converged on a solution;
however, convergence is based on the values of the funq;igns that are estimates. Thus, diffuse-layer iterations
continue until the values of the functions are the same on successive diffuse-layer iterations within a specified tol-
erance.

When explicitly calculating the composition of the diffuse layer, the function involvingithef the
potential unknown (equation 69) is replaced with a charge-balance function that includes the surface charge and the
diffuse-layer charge:

zz (s |(s) zzlnl S’ (81)

K
where the functiorf , . is zero when charge balance is achieved. The total derivdtjve of is
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|
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For data input teHREEQG explicit calculation of the diffuse layer is invoked using-th&use_layer
identifier in theSURFACE data block. Specific surface are®,( Ar ) and mass of sugace () are defined in
the SURFACE data block. The moles of surface sites are defined (SJURFACE if the number of sites is fixed,
or (2) by a proportionality factor in tHRURFACE data block and the moles of a phase in
EQUILIBRIUM_PHASES data block, or (3) by a proportionality factor in 8 dRFACE data block and the
moles of a kinetic reactant IRINETICS data block. The charge on a surface species is specified in the balanced
chemical reaction that defines the species iIrStHBFACE_SPECIESdata block (see “Description of Data
Input”).

Non-Electrostatic Surface Complexation

Davis and Kent (1990) describe a non-electrostatic surface-complexation model. In this model, the
electrostatic term is ignored in the mass-action expressions for surface complexes. In addition, no surface
charge-balance or surface charge-potential relation is used; only the mole-balance equation is included for eact
surface site type.

For data input teHREEQG the non-electrostatic model for a surface is invoked by usingiheedlidentifier
in the SURFACE data block (see “Description of Data Input”).

NUMERICAL METHOD FOR SPECIATION AND FORWARD MODELING

The formulation of any chemical equilibrium problem solvedbreeQcis derived from the set of
functions denoted inthe previous sections. These incfyde f, )‘g fu ,fHZO fu fo fp f

f
total p pss ! !
fo,f , f f andfq,s , where , anfly are the simply the mole-balance functions for hydrogen and

'z Nz s !
o;;gen andm irlefers to all aqueous master species excegt H,O and the alkalinity master species. The
corresponding set of master unknownknia, | Ina, Ny » Inae_ Ina,HZO Ina, InWaq Ngas Ny s (or
possiblylna,; in speciation calculations), In,aSk In,aH+ (or possiloig, in speciation calculations),
Inay, (explicit diffuse-layer calculationyy , arday, (implicit diffuse-layer calculation). When the residuals
of allsthe functions that are included for a given calséulation are equal to zero, a solution to the set of nonlinear
equations has been found, and the equilibrium values for the chemical system have been determined. (Note the
some equations that are initially included in a given calculation may be dropped if a pure phase or gas phase doe
not exist at equilibrium.) The solution technique assigns initial values to the master unknowns and then uses a
modification of the Newton-Raphson method iteratively to revise the values of the master unknowns until a

solution to the equations has been found within specified tolerances.

For a set of equations, = 0 ,in unknovxmjs the Newton-Raphson method involves iteratively revising
an initial set of values for the unknowns. Liet= f,  be the residuals of the equations for the current values of the
unknowns. The following set of equations is formulated:
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r = —Zﬁdxj , (83)

i
wherel s the total number of master unknowns for the calculation. The set of equations is linear and can be solved
simultaneously for the unknownd,xj . New values of the unknowns are calculé(tJééxj = kxj + dxj , Where

k refers to the iteration number, after which, new values of the residuals are calculated. The process is repeated
until the values of the residuals are less than a specified tolerance.

Two problems arise when using the Newton-Raphson method for chemical equilibria. The first is that the
initial values of the unknowns must be sufficiently close to the equilibrium values, or the method does not converge,
and the second is that a singular matrix may arise if the chemical reactions for a set of phases are not linearly
independentPHREEQCUSeS an optimization technique developed by Barrodale and Roberts (1980) to avoid the
occurrence of singular matrices. The optimization technique also allows inequality constraints to be added to the
problem, which are useful for constraining the total amounts of phases and solid solutions that can react.

The selection of initial estimates for the master unknowns is described for each type of modeling in the
following sections. Regardless of the strategy for assigning the initial estimates, the estimates for the activities of
the master species for elements or element valence states are revised, if necessary, before the Newton-Raphson
iterations to produce approximate mole balance. The procedure for aqueous master species is as follows. After the
initial estimates have been made, the distribution of species is calculated for each element (except hydrogen and
oxygen) and, in initial solution calculations only, for the individual valence states which were defined. Subsequently,
the ratio of the calculated moles to the input moles is calculated. If the ratio for a master species  is greater than
1.5 or less than 19) the following equation is used to revise the value of the master unknown:

Nag
0
Ezbm',inim
k+1 _ Kk i U
Ina,; = = Ina, + winG——, (84)
O Tw O
0 [l
0 0

wherew is 1.0 if the ratio is greater than 1.5 and 0.3 if the ratio is less thanatol T, s the total concentration

of an element or element valence state. Analogous equations are used for exchange and surface master species.
After revisions to the initial estimates, the distribution of species is calculated. The iterations continue until the
ratios are within the specified ranges, at which point the modified Newton-Raphson technique is used. If the suc-
cessive revisions fail to find activities such that the ratios are within the specified bounds, then a second set of iter-
ations tries to reduce the ratios below 1.5 with no lower limit to these ratios. Whether or not the second set of
iterations succeeds, the Newton-Raphson technique is then used.

The optimization technique of Barrodale and Roberts (1980) is a modification of the simplex linear
programming algorithm that minimizes the sum of absolute values of residuals (L1 optimization) on a set of linear
eguations subject to equality and inequality constraints. The general problem can be posed with the following matrix
equations:

AX = B
CX=D (85)
EX<F .
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The first matrix equation is minimized in the sense t@ bi -y g j xJ. is a minimum, V\M'Eere is the number

i ]
of equations to be optimized, subject to the equality constraints of the second matrix equation and the inequality
constraints of the third matrix equation.

The approach afHREEQJs to include some of the Newton-Raphson equations in the optimization equations
(AX = B), rather than include all of the Newton-Raphson equations as equalitls{ D ). Equations that are
included in theA matrix may not be solved for exact equality at a given iteration, but will be optimized in the sense
given above. Thus, at a given iteration, an approximate mathematical solution to the set of Newton-Raphson
eqguations can be found even if no exact equality solution exists, for example when forcing equality for all equations
would result in an unsolvable singular matrix. The equations for alkalinity, total moles of gas in the gas phase, pure
phases, and solid-solution components are included i thatrix. All mole-balance, charge-balance, and
surface-potential equations are included inBhmatrix. Inequalities that limit the dissolution of pure phases,
solid-solution components, and gas components to the amounts present in the system are inclu@aatrike

In an attempt to avoid some numerical problems related to small numberdBmtatix, a row of the matrix
that represents a mole-balance equation is scaled if all coefficients (a colarand®) of the corresponding
unknown (change in the log activity of the element master species) are less than 1e-10. In this case, the equatit
is scaled by 1e-10 divided by the absolute value of the largest coefficient. Alternatively, when specified,
(-diagonal_scalen KNOBS), a mole-balance equation is scaled by 1e-10 divided by the coefficient of the
corresponding unknown if the coefficient of the unknown in the mole-balance equation is less than 1e-10.

The scaled matrix is solved by the optimizing solver, and the solution that is returned is a vector of changes
to the values of the master unknowns. The values of the changes are checked to ensure that the changes to the
unknowns are less than criteria that limit the maximum allowable size of changes. These criteria are specified b
defaultin the program or by input in tieNOBS data block. If any of the changes are too large, then all the changes
to the unknowns, except the mole transfers of pure phases and solid-solution components, are decreased
proportionately to satisfy all of the criteria. Pure-phase and solid-solution mole transfers are not altered except to
produce nonnegative values for the total moles of the pure phases and solid-solution components. After suitable
changes to the unknowns have been calculated, the master unknowns are updated; new molalities and activities
all the aqueous, exchange, and surface species are calculated, and residuals for all of the functions are calculate
The residuals are tested for convergence (convergence criteria are defined internally in the program, but can be
switched to an alternate set with tigenvergence_tolerancén KNOBS or -high_precisionoption in
SELECTED_OUTPUT data blocks), and a new iteration is begun if convergence has not been attained.

Aqueous Speciation Calculations

Aqueous speciation calculations use a chemical composition for a solution as input and calculate the
distribution of aqueous species and saturation indices for phases. Aqueous speciation calculations include the
equationsf . f HO and“ , Which are equations for mole balance for elements or element valence states,
activity of water, and ionic strength. Mole-balance equations for hydrogen and oxygen are not included, becaus
the total masses of hydrogen and oxygen generally are not known. Instead, the mass of water is assumed to be 1
kg or is specified-vater in theSOLUTION or SOLUTION_SPREAD data block) and the total masses of
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hydrogen and oxygen are calculated in the speciation calculation from the mass of water and the concentrations of
all hydrogen and oxygen containing aqueous species.

If pH, pe, or the master unknown for an element or element valence state is specified to be adjusted to obtain
charge balance for the solutioh, isincluded to calculate the value of the master unknann (Irae_ ,Inaorin )
that produces charge balance. In this case, the calculated pH, pe, or total concentmation of  will differ from the
input value. Iff, is included for the master unknowr,p , the equdtjgn is excluded.

If pH, pe, or the master unknown for an element or element valence state is specified to be adjusted to obtain
a specified saturation index for a pure phet%e, is included to calculate the value of the master unda(ﬂown (In :
In a_,or Ina,, ) that produces the target saturation index. In this case, the calculated pH, pe, or total concentration
of m'" will differ from the input value. Iff D is included for the master unknowln , the equafign is excluded.

If total alkalinity is specified in the input, the mole-balance equation for alkalir]&q)é, , is included to
calculatelna,,, and the total molality of the element associated with alkalinity (carbon in the default database). If
the problem definition contains a mole-balance equation for both carbon [or carbon(+4)] and alkalinity, then the two
master unknowns associated with these equationsarg, = InaCO_2 (for the default database fllnal'and
In this case, the pH will be calculated in the speciation calculation and will not be equal to the input pH.

For speciation calculations, if the alkalinity mole-balance equation is included in the problem formulation, it
is included as the only optimization equation for the solver. All other equations are included as equality constraints.
No inequality constraints are included for speciation calculations.

Partial redox disequilibrium is allowed in initial solution calculations, and redox options B@&JTION
or SOLUTION_SPREAD data block affect the aqueous speciation and saturation index calculations. By default,
whenever a value of the activity of the electron is needed to calculate the molality or activity of an aqueous species,
the input pe is used. If a default redox couple is givext¢x) or a redox couple is specified for an element (or
combination of element valence states) 8&UTION keyword in “Description of Data Input”), then the
mass-action expression for each aqueous species of the redox element is rewritten to remove the activity of the
electron from the expression and replace it with the activities of the redox couple. For example, if iron (Fe) is to be
distributed using the sulfate-sulfide redox couple [S(+6)/S(-2)], then the original chemical reactiori:for Fe

Fe'? = Fe™+e (86)

would be rewritten using the association reaction for sulfide,
-2 + - =
SO, +9H +8e = HS +4H,0, (87)

to produce the following chemical reaction that does not include electrons:

1.2 9, + +3 1 1
2, + = + +
Fe' 8804 8H Fe 8HS 2HZO (88)

The mass-action expression for this final reaction would be used as the mass-action expression for the species
Fe+3, and the differential for the change in the moIeEe?g dn[: 3 , would also be based on this mass-action
expression. However, the original mass-action expression (baseed on equation 86) is used to determine the
mole-balance equations in which the teane+3 appears, that is, the S;E&Eisés would appear in the mole-bal-
ance equation for iron, but not in the mole-balance equations for S(+6) or S(-2). The effect of these manipulations

is that ferrous iron, ferric iron, sulfate, and sulfide are in redox equilibrium. Another set of redox elements (for
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example oxygen and nitrogen) may also be defined to be in equilibrium among themselves, but not necessarily ir
redox equilibrium with iron and sulfur.

By default, if a saturation-index calculation requires a value for pe (or activity of the electron), then the input
pe is used. If a default redox couple has been defiredbk), then the dissolution reaction for the phase is
rewritten as above to eliminate the activity of the electron and replace it with the activities of the redox couple.

The set of master unknowns may change for redox elements during a calculation. The process, which is
termed “basis switching”, occurs if the activity of the master species which is the master unknown for a
mole-balance equation becomes ten orders of magnitude smaller than the activity of another master species
included in the same mole-balance equation. In this case, all of the mass-action expressions involving the curren
master unknown (including aqueous, exchange, gas, and surface species, and pure phases) are rewritten in ter
of the new master species that has the larger activity. An example of this processiis, if nitrogen is present in a systen
that becomes reducing, the master unknown for nitrogen would switch from nitrate, which would be present in
negligible amounts under reducing conditions, to ammonium, which would be the dominant species. Basis
switching does not affect the ultimate equilibrium distribution of species, but it does speed calculations and avoid
numerical problems in dealing with small concentrations.

Initial values for the master unknowns are estimated and then revised according to the strategy described ir
the previous section. For initial solution calculations, the input values for pH and pe are used as initial estimates
The mass of water is 1.0 kg unless otherwise specified, and the activity of water is estimated to be 1.0. lonic
strength is estimated assuming the master species are the only species present and their concentrations are ec
to the input concentrations (converted to units of molality). The activity of the master species of elements (except
hydrogen and oxygen) and element valence states are set equal to the input concentration (converted to molality
If the charge-balance equation or a phase-equilibrium equation is used in place of the mole-balance equation fc
an element or element valence state, then the initial activity of the master species is set equal to one thousandth ¢
the input concentration (converted to molality).

For data input teHREEQCall options for a speciation calculation--use of an alkalinity equation,
charge-balance equation, phase-equilibrium equation, and redox couples--are defB@tiréON or
SOLUTION_SPREAD data block (see “Description of Data Input”).

Calculation of the Initial Composition of an Exchanger

An initial exchange-composition calculation is needed if the composition of an exchanger is not defined
explicitly, but rather, is indicated to be in equilibrium with a specified solution composition. In this case, the
composition of the exchanger is not known, only that it is in equilibrium with a solution. The equations for an initial
exchange-composition calculation drg f szo , dr&d , Which are equations for mole balance for each
exchanger, mole balance for each element or element valence state, activity of water, and ionic strength.

For initial exchange-composition calculations, the valu€eg, of include only the agueous concentrations
and the mole-balance equatiofis do not contain terms for the contribution of the exchangers to the total elemen
concentrations. All quantities related to the aqueous phase are the same as for the solution without the exchange
present. Essentially, only the values of the master unknowns of the exchange asséneplage, , are adjusted t
achieve mole balance for the exchanger. Once mole balance is achieved, the composition of each exchanger is
known.
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All equations for initial exchange-composition calculations are included as equality constraints in the solver.
No equations are optimized and no inequality constraints are included.

An initial exchange-composition calculation is performed only if the exchanger is defined to be in equilibrium
with a specified solution. The distribution of species for this solution has already been calculated, either by an initial
solution calculation or by a batch-reaction or transport calculation. Thus, the values of all master unknowns related
to the aqueous phase are known and are used as initial estimates for the exchange calculation. The initial estimate
of the master unknown for each exchanger is set equal to the moles of exchange sites for that exchanger.

For data input teHREEQG definition of the initial exchange-composition calculation is made with the
EXCHANGE data block (see “Description of Data Input”).

Calculation of the Initial Composition of a Surface

An initial surface-composition calculation is needed if the composition of a surface is not defined explicitly,
but is indicated to be in equilibrium with a specified solution composition. In this case, the composition of the
surface is not known, only that it is in equilibrium with a solution. The equations for the initial surface-composition
calculation ara‘Sk Iq,s 0|fzy s f szo ,anfju , Which are equations for mole-balance for each type of surface
site in the surface assemblage, the charge-potential relation or charge-balance for each surface (both of these
equations are excluded in the non-electrostatic model), mole balance for each element or element valence state,
activity of water, and ionic strength.

For initial surface-composition calculations, the value$ gf include only the aqueous concentrations and
the corresponding mole-balance equatidps do not contain terms for the contribution of the surfaces to the total
element concentrations. All quantities related to the aqueous phase are the same as for the solution without the
surface assemblage present.

For the explicit calculation of the diffuse layer, a charge-balance equation is used for each d’lé‘rfgce, ; the
values of the master unknowns for each surface type of the surface assembgge, and the potential unknowns
Inay, , are adjusted to achieve mole balance and charge balance for each surface. If the diffuse-layer composition
is notS explicitly included in the calculation, then the charge-potential equigjon is used in place of the surface
charge-balance equation. If the non-electrostatic model is used for the surfaice assemblage, then neither the surface
charge-balance nor the charge-potential equation is included in the set of equations to be solved.

All equations for initial surface-composition calculations are included as equality constraints in the solver. No
equations are optimized and no inequality constraints are included.

An initial surface-composition calculation is performed only if the initial surface is defined to be in
equilibrium with a specified solution. The distribution of species for this solution has already been calculated, either
by an initial solution calculation or by a batch-reaction or transport calculation. Thus, the values of all master
unknowns related to the aqueous phase are known and are used as starting estimates for the surface calculation. The
initial estimate of the activity of the master species for each surface is set equal to one tenth of the moles of surface
sites for that surface. For explicit and implicit diffuse-layer calculations, the initial estimate of the potential unknown
InaqJS is zero for each surface, which implies that the surface charge is zero.

For data input teHREEQG definition of the initial surface-composition calculation is made with the
SURFACE data block (see “Description of Data Input”).
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Calculation of the Initial Composition of Fixed-Volume Gas Phase

An initial gas-phase-composition calculation is needed if the composition of a gas phase is not defined
explicitly, but rather, the composition of a fixed-volume gas phase is defined to be that which is in equilibrium with
a specified solution composition. The equations for the initial gas-phase-composition calculation are the same ¢
an initial solution calculation and ark, fHZO : arhg , which are equations for mole balance for each element
or element valence state, activity of water, and ionic strength.

For initial gas-phase-composition calculations, the valuds,pf include only the aqueous concentrations
and the corresponding mole-balance equatigps do not contain terms for the contribution of the gas component
to the total element concentrations. The values calculated for all quantities related to the aqueous phase are the
same as for the solution without the gas phase present. Once the distribution of species in the aqueous phase i
determined, the partial pressures of all components in the gas phase can be calculated. The partial pressures a
the specified fixed volume are used with the ideal gas law to calculate the moles of each component in the gas
phase.

All equations for initial gas-phase-composition calculations are included as equality constraints in the solver.
No equations are optimized and no inequality constraints are included.

An initial gas-phase-composition calculation is performed only if the gas phase is defined to have a constant
volume and is defined to be initially in equilibrium with a specified solution. The distribution of species for this
solution has already been calculated, either by an initial solution calculation or by a batch-reaction or transport
calculation. Thus, the values of all master unknowns related to the aqueous phase are known and are used as initi
estimates for the initial gas-phase-composition calculation.

For data input teHREEQG definition of the initial gas-phase-composition calculation is made with the
GAS_PHASE data block (see “Description of Data Input”).

Batch-Reaction and Transport Calculations

Batch-reaction and transport calculations require calculating equilibrium between the aqueous phase and an
equilibrium-phase assemblage, surface assemblage, exchanger assemblage, solid-solution assemblage, and g
phase that is defined to be present in a chemical system. Irreversible reactions that occur prior to equilibration
include mixing, specified stoichiometric reactions, kinetic reactions, and temperature change. The complete seto
Newton-Raphson equations that can be included in batch-reaction and transport calculationsfeontains ,
szo’ fr foo fptotal, fp, fpss’ fSk : fz,fz’s,fu ,andfws :

Equations for mole balance on hydrogén , activity of Wéftﬁgo , mole balance on oXygen , charge
balancef, , and ionic strengqu are always included and are associated with the master ulmiaéowns ,

In 4,0 Waq (mass of Water)LnaH+ ,and , which are always included as master unknowns.

Mole-balance equationk,;  are included for total concentrations of elements, not individual valence states
or combinations of individual valence states. A mole-balance equation for alkalinity can not be included,; it is used
only in initial solution calculations.

The equationf P is included if a fixed-pressure gas phase is specified and is present at equilibrium. The
equationsf , are included if an exchange assemblage is specified. The eqbszkations are included if a surface
assemblage is specified. In additi(frqJs is included for each surface for which an implicit diffuse-layer
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calculation is specified sz, s Isincluded for each surface for which an explicit diffuse-layer calculation is
specified. An equatiorf D is included for each pure phase that is present at equilibrium. An Ssation is
included for each component of each solid solution that is present at equilibrium.

It is not known at the beginning of the calculation whether a pure phase, solid solution, or fixed-pressure gas
phase will be present at equilibrium. Thus, at each iteration, the following logic is used to determine which of the
equations should be included in the equilibrium calculations. The equation for a phase is included if it has a positive
moles,nIO >0 , or if the saturation index is calculated to be greater than the target saturation index. If the equation
is not included in the matrix, then all coefficients for the unkndwg in the matrix are set to zero.

For an ideal solid solution, the equatioh& are included if the moles of any of the components are

*_IAP
greater than a small numbérx(lo_13 ) or if the SlEI,K—pSS , is greater than 1.0. For an ideal solid solution,
IAP

Pss Pss
Pss _

w - Xp,.+ SO the summation determines if the sum of the mole fractions is greater than 1.0. If the equations
Pss >

for a solid solution are not included in the matrix, then all coefficients for the unkno\ups in the matrix are set
to zero. -

For nonideal, binary solid solutions the following procedure to determine whether to include solid-solution
equations is developed from the equations of Glynn and Reardon (1990, equations 37 through 48). If the moles of

any of the solid-solution components are greater than a small nurfhio]a(D_(l3 ) then all the equations for the solid
solution are included. Otherwise, the aqueous activity fractions of the components are calculated from
IAP; IAP,

and X2 aq = (89)

X S ——— e
Lad "~ AP, +1AP, IAP, + AP,

wherelAP is the ion activity product for the pure component. Next the mole fractions of the solids that would be in
equilibrium with those aqueous activity fractions are determined by solving the following equatigariolix,

(=1xq):

_ 1
XA K + XA K, =

Xl, aq X2, aq
)\1K1 )‘2K2

(90)

wherex; andx, are the mole fractions in the solid phakg,andK, are the equilibrium constants for the pure com-
ponentsA; and, are the activity coefficients of the components as calculated from the Guggenheim parameters
for the excess free energy. This equation is highly nonlinear and is solved by first testing subintervals between 0
and 1 to find one that contains the mole fraction of component 1 that satisfies the equation and then interval halving
to refine the estimate of the mole fraction. Once the mole fractions of the solid have been determined, two values of
the “total activity product” g M ) are calculated as follows:

S Mag = IAP, +1AP, (91)
andZI‘ISoliol = XA Kp + XA K, (92)

If Z Meolig < z Mag then the equations for the solid solution are included, otherwise, the equations are not

included. If the equations for a solid solution are not included in the matrix, all coefficients for the unkdayns
in the matrix are set to zero.
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At each iteration, the equation for the sum of partial pressures of gas components in the gas phase is include
for a fixed-pressure gas phase if the moles in the gas phase are greater than a small Ruenber ( ), or if the
sum of the partial pressures of the gas-phase components, as calculated from the activities of aqueous species
greater than the total pressure. If the equation for the sum of the partial pressures of gas components in the ga:s
phase is not included in the matrix, then all coefficients of the unkch&n are set to zero.

Equationsf P f D and b, are included as optimization equations in the solver. All other equations are

included as equality constraints in the solver. In addition, several inequality constraints are included in the solver:

, IS constrained to

(1) the value of the residual of an optimization equaﬁBn , Which is eqbgl-toz ay X
]

be nonnegative, which maintains an estimate of saturation or undersaturation for the mineral; (2) the value of th

residual of an optimization equaticfrb , Which is equabgo— Zap iX , is constrained to be nonnegative,
]

which maintains an estimate of saturation or undersaturation for the component of the solid solution; (3) the resid-
ual of the optimization equation fdrPlotal is constrained to be nonnegative, which maintains a nonnegative esti-
mate of the total gas pressure; (4) the decrease in the mass of a purecmbase, , IS constrained to be less than
equal to the total moles of the phase presagt, ; (5) the decrease in the mass of a component of a solid solutior
d Moo is constrained to be less than or equal to the total moles of the component pn%sent, ; and (6) the decreas

in the moles in the gas phax;isNgaS , is constrained to be less than the moles in the g&%ggase,

Initial values for the master unknowns for the aqueous phase are taken from the previous distribution of
species for the solution. If mixing of two or more solutions is involved, the initial values are the sums of the values
in the solutions, weighted by their mixing factor. If exchangers or surfaces have previously been equilibrated with
a solution, initial values are taken from the previous equilibration. If they have not been equilibrated with a
solution, the estimates of the master unknowns are the same as those used for initial exchange-composition an
initial surface-composition calculations. Initial values for the moles of each phase in the pure-phase assemblage
each component in the solid solutions in the solid-solution assemblage, and each gas component in the gas pha:
are set equal to the input values or the values from the last simulation in which they were saved.

For data input teHREEQG definition of batch-reaction and transport calculations rely on many of the data
blocks. Initial conditions are defined wiBOLUTION or SOLUTION_SPREAD, EXCHANGE , SURFACE,
GAS_PHASE EQUILIBRIUM_PHASES , SOLID_SOLUTIONS, andUSE data blocks. Batch reactions are
defined by initial conditions and witflIX , KINETICS , REACTION , REACTION_TEMPERATURE , and
USE data blocks. Transport calculations are specified withBMECTION or theTRANSPORT data block
(see “Description of Data Input”).

NUMERICAL METHOD AND RATE EXPRESSIONS FOR CHEMICAL KINETICS

A major deficiency with geochemical equilibrium models is that minerals, organic substances, and other
reactants often do not react to equilibrium in the time frame of an experiment or a model period. A kinetically
controlled reaction of a solid or a nonequilibrium solute generates concentration changes of aqueous species
according to the rate equation:
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dm
dt
wherec; is the stoichiometric coefficient of specian the kinetic reaction, arfg is the overall reaction rate for
substancé& (mol/kgw/s). In general, reaction rates vary with reaction progress, which leads to a set of ordinary dif-
ferential equations that must be solved.

Kinetic rates have been published for numerous reactions, and for various conditions of temperature, pressure,
and solution composition. However, different researchers applied different rate expressions to fit observed rates, and
it is difficult to select rate expressions (which commonly have been hard coded into programs) that have sufficient
generality. The problem is circumventediRREEQCWith an embedded BASIC interpreter that allows definition of
rate expressions for kinetic reactions in the input file in a general way, obviating the need for hard-coded rate
expressions in the program.

Numerical Method

The rate must be integrated over a time interval, which involves calculating the changes in solution
concentrations while accounting for effects on the reaction rate. Many geochemical kinetic reactions result in “stiff”
sets of equations in which some rates (the time derivatives of concentration change) are changing rapidly while
others are changing slowly as the reactions unfold in #meEEQCSOIves such systems by a Runge-Kutta (RK)
algorithm, which integrates the rates over time. An RK scheme by Fehlberg (1969) is used, with up to 6 intermediate
evaluations of the derivatives. The scheme includes an RK method of lower order to derive an error estimate. The
error estimate is compared with a user-defined error tolerance to automatically decrease or increase the integration
time interval to maintain the errors within the given tolerance. Furthermore, if the rates in the first three RK
evaluations differ by less than the tolerance, the final rate is calculated directly and checked once more against the
required tolerance. The user can specify the number of intermediate RK subintervals which are evaluated before
final integration of the interval is attempted (see “Description of Data Input”). The coefficients in the scheme are
from Cash and Karp (1990).

Rate Expressions

The overall rate for a kinetic reaction of minerals and other solids is:

Ay Om, '
Rk = I’k N7 B_D y (94)

V Ny
wherer, is the specific rate (molAts), A, is the initial surface area of the solid?jnV is the amount of solution
(kgw), my, is the initial moles of solidn, is the moles of solid at a given time, ang/fny,)" is a factor to account
for changes if\y/V during dissolution and also for selective dissolution and aging of the solid. For uniformly dis-
solving spheres and cubes 2/3. All calculations irPHREEQcare in moles, and the factég/V must be provided
by the user to obtain the appropriate scaling.

The specific rate expressiomg, , for a selection of substances have been included in the database under
keywordRATES. These specific rates have various forms, largely depending on the completeness of the
experimental information. When information is lacking, a simple rate that is often applied is
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wherek, is an empirical constant attlP/K, is the saturation rati®@. This rate equation can be derived from
transition-state theory, where the coefficient s related to the stoichiometry of the reaction when an activated
complex is formed (Aagaard and Helgeson, 1982; Delany and others, 1986). @fteri, . An advantage of this
expression is that the rate equation applies for both supersaturation and undersaturation, and the rate is zero a
equilibrium. The rate is constant over a large domain whenever the geochemical reaction is far from equilibrium
(IAP/K < 0.1), and the rate approaches zero WASYK approaches 1.0 (equilibrium).

The rate expression may also be based on the saturation 8idextfie following form:

_ dAPD
e = kkclogDKk 0 (96)

This rate expression has been applied with some success to dissolution of dolomite (Appelo and others, 1984).
Rate expressions often contain concentration-dependent terms. One example is the Monod equation:

r = rmaxEKmi 0 (97)
wherer o«is the maximal rate, artd,, is equal to the concentration where the rate is half of the maximal rate.
The Monod rate equation is commonly used for simulating the sequential steps in the oxidation of organic matter
(Van Cappellen and Wang, 1996). A series of rate expressions can be developed in line with the energy yield of
the oxidant; firsO, is consumed, theno, , and successively other, more slowly operating oxidants such as
Fe(lll) oxides anolso;2 . The coefficients in the Monod equation can be derived from first-order rate equations for
the individual processes. For degradation of organic m&tjan (soils the first-order rate equation is

rrle —K;S¢c (98)
wheres; is organic carbon content (mol/kg soil), dqds the first-order decay constantsThe value okq is
approximately equal to 0.025 ¥iin a temperate climate with aerobic soils (Russell, 1973), whereas in sandy
aquifers in The Netherlands, wheve, is the oxidentse—4 -1 @oncentrations of up to|3 K, are

found in ground water even outside the redox-domain of organic degradatindmyd 3p MO, may be taken

as the concentration where the (concentration dependent) rate for aerobic degradation equals the reaction rate f
denitrification. First-order decax{= 0.025 yr for 0.3 MM O, andk; = 5e-4 yi Lfor3 M O,) is obtained with

the coefficients, 5= 1.57e-9 g andK,,= 294 u M in the Monod equation, and oxygen as the limiting solute. A
similar estimate for denitrification is based oy 5e-4 yf! for NO; =3 mM andk; = 1e-5 yr! for NO; =3 u M,

which yieldsr 4= 1.67e-11 d andK,,=155pu M. The combined overall Monod expression for degradation of
organic carbon in a fresh-water aquifer is then:

=11
OSc O 5 1.57x 10° mg, 167107 m g
Re = 6sc 0—=0 [ + 0 (99)
4
GbJ1E294x10 +mg  1.55x 107 +m O

3

where the factor 6 derives from recalculating the concentratignfodm mol/kg soil to mol/kg pore water.
A further aspect of organic matter decomposition is that a part appears to be refractory and particularly
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resistant to degradation. Some models have been proposed to account for the tendency of part of the sedimentary

organic carbon to survive; tentatively, a faqgglgg may be assumed, which makes the overall rate second order.
C

This factor implies that a decrease to 1/10 of tohe original concentration results in a decrease of 1/100 in the rate of
further breakdown. It must be noted that this simple factor is used to approximate a very complicated process and a
more thorough treatment of the process is needed, but is also possible given the flexibility of definingrtaies in
EQC.

Still other rate expressions are based on detailed measurements in solutions with varying concentrations of the
agueous species that influence the rate. For example, Williamson and Rimstidt (1994) give a rate expression for
oxidation of pyrite:

_ 41019 05 -0.11
F oyrite = 10 Mo, M+ (100)

which shows a square root dependence on the molality of oxygen, and a small increase of the rate with increase in
pH. This rate is applicable for the dissolution reaction only, and only when the solution contains oxygen. It is prob-
ably inadequate when the solution approaches equilibrium or when oxygen is depleted.

An example of a more complete rate expression which applies for both dissolution and precipitation is the rate
equation for calcite. Plummer and others (1978) have found that the rate can be described by the equation:

k[H™] +k,[CO,] +ky[H,0] —k,[Ca”][HCO}], (101)

M'calcite =
where bracketed chemical symbols indicate activity, and the coeffikigkisandk; have been determined as a

function of temperature by Plummer and others (1978) from calcite dissolution experimentsdha@ged solu-

tions. The rate contains a forward paufirst three terms of equation 101), and a backwardrg@ast term of

equation 101), and thus is applicable for both dissolution and precipitation. The backward rate contains a coeffi-
cientk,, the value of which depends on the solution composition. In a pure water-calcite system, bicarbonate con-
centration is approximately equal to twice the calcium concentration and the backward rate can be approximated as

r, = k,[Ca "][HCO}] :k42[Ca2+]2. (102)

At equilibrium, [Ca2+] is the activity at saturaticilﬁ:a2+]s . Alsgycite= 0, and therefore,

r
_ f
2k, = [Ca2+]2. (103)
S

Combining equations 101, 102, and 103 gives:

_ Jjca”]
Fcalcite = rf|:1_ 2e2g | (104)
qCa ]s
In a pure Ca-C@system at constant GQressure, the ion activity product (IAP) is:
2+ -2 3 2+.3
[Ca” ]I[HCO;]  [ca®™ [Ca™"]s
IAI:)calcite = P =4 P andKCaIcite =4 P : (105)
CO, CO, CO,

Thus, for a calcite-water system, the rate for calcite can be approximated as:
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2
<r |1- AP O (106)

calcite

M'calcite
wherer; contains the first three terms given in equation 101.
EQUATIONS AND NUMERICAL METHOD FOR TRANSPORT MODELING

PHREEQChas the capability to model several one-dimensional transport processes including: (1) diffusion,
(2) advection, (3) advection and dispersion, and (4) advection and dispersion with diffusion into stagnant zones,
which is referred to as dual porosity. All of these processes can be combined with equilibrium and kinetic chemical
reactions.

The Advection-Reaction-Dispersion Equation

Conservation of mass for a chemical that is transported (fig. 1) yields the advection-reaction-dispersion
(ARD) equation:

2
aC dC . . 8 C aq

L
ax> Ot

at ~ " Vox
whereC is concentration in water (mol/kgwlis time (s),v is pore water flow velocity (m/s¥ is distance (m)D,
is the hydrodynamic dispersion coefficienffsnD, = D+ a, v, withD, the effective diffusion coefficient,

anda the dispersivity (m)], arglis concentrzation in the solid phase (expressed as mol/kgw in the pores). The

term —v%: represents advective transpﬁTE,a—cz: represents dispersive transp%g, and is the change in con
0x

centration in the solid phase due to reactiaps(the same units &3). The usual assumption is thaandD, are

equal for all solute species, so tkatan be the total dissolved concentration for an element, including all redox

species.

oc g
/_at ' ot
2
O
oC : / —DL%+6_€’de
ok 2 ' — >
T T N
L © oC .
|
vC _-_->/'__'__'_Z > v5b+&dxm
P Y
dx

Figure 1.-- Terms in the advection-reaction-dispersion equation.
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The transport part of equation 107 is solved with an explicit finite difference scheme that is forward in time,
central in space for dispersion, and upwind for advective transport. The chemical interactidg/térm for each
element is calculated separately from the transport part for each time step and is the sum of all equilibrium and
non-equilibrium reaction rates. The numerical approach follows the basic components of the ARD equation in a
split-operator scheme (Press and others, 1992; Yanenko, 1971). With each time step, first advective transport is
calculated, then all equilibrium and kinetically controlled chemical reactions, thereafter dispersive transport, which
is followed again by calculation of all equilibrium and kinetically controlled chemical reactions. The scheme differs
from the majority of other hydrogeochemical transport models (Yeh and Tripathi, 1989) in that kinetic and
equilibrium chemical reactions are calculated both after the advection step and after the dispersion step. This reduces
numerical dispersion and the need to iterate between chemistry and transport.

A major advantage of the split-operator scheme is that numerical accuracy and stability can be obtained by
adjusting time step to grid size for the individual parts of the equation. Numerical dispersion is minimized by always
having the following relationship between time and distance discretization:

(At) 5 = A—VX, (108)

where(At) , is the time step for advective transport, Axd is the cell length. Numerical instabilities (oscillations)
in the calculation of diffusion/dispersion are eliminated with the constraint:

(&%)

3D, (109)

(At <

where(At), is the time step (s) for dispersive/diffusive transport calculations. The two conditions of equation 108
and 109 are the Courant condition for advective transport and the Von Neumann criterion for dispersive transport
calculations, respectively (for example, Press and others, 1992). Numerical dispersion is in many cases negligible
whenAx<a, , because physical dispersive transport is then equally or more important than advective transport.
When a fine grid is used to reduce numerical dispersion, the time step for dispersive transport calculations (equa-
tion 109) may become smaller than the time step for advective calculations (equation 108), because the first has
guadratic dependence on grid size. The conflict is solved by multiple dispersion time steps such that
Z(At)D = (At) 5, and calculating chemical reactions after each of the dispersion time steps. For mrig-to
EQC, atime step must be defined which equals the advection timgAtgR , or, if diffusion is modeled, equals the
diffusion period. Furthermore, the numbeisbiftsmust be defined, which is the number of advection time steps
(or diffusion periods) to be calculated.

Dispersive transport in a central difference scheme is essentially mixing of cells. A mixingrfex€ier
defined as

D, (At) 5
n(ax)*
wheren is a positive integer. The restriction is that never more is mixed out of a cell than stays behind st is,

must be less than 1/3 as follows from equation 109. When, according to equation 116 Wjthixfis greater
than 1/3, the value afis increased such thatixf is less than or equal to 1/3. The dispersion time step is then

mixf = (110)

(At)p :
(At)p = — andn mixes are performed.
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The numerical scheme has been checked by comparison with analytical solutions for simple cases with lineal
exchange. Linear exchange results when the exchange coefficient for the exchange half-reaction is equal for tw
homovalent cations. It gives a linear retardaffon 1 + CEC / G whereCEC s the cation exchange capacity,
expressed in mol/kgw. In the following example, a 130 m flow tube contains water with an initial concentration
C(x,0) =C, = 0. The displacing solution has concentrati®r C, = 1 mmol/kgw, and the pore-water flow velocity
isv =15 m/year. The dispersivity is, = 5 m, and the effective diffusion coefficieBtis 0 n¥/s. The profile
is given after 4 years for two chemicals, one Wth 1 (CI) and the other witR = 2.5 (N&).

Two boundary conditions can be considered for this problem. One entails a flux or third type boundary
condition atx = 0:

D 0C(Xepg t)

—~
This boundary condition is appropriate for laboratory columns with inlet tubing much smaller than the column
cross section. The solution for the ARD equation is then (Lindstrom and others, 1967):

C(0,t) = Cy+ (111)

1
C(xt) =C;+ E(CO—Ci) A, (112)
where, withD| = a, v :
Ox— O _ 2 O D
A= erfch X—Vv/ R O+ X exp (x-v/R"| 1 vt/ Rgexp %e Hea Xt WR X+ Vt/R . (113)
4a vt/RO NTOL 4o V/R | 2 0(|_ 4a v/ R]
Figure 2 shows the comparison for three simulations with different grid spagiangs, =15,5, and 1.67 m,

which correspond witl{At) , =1, 1/3, and 1/9 years, respectively. Fon@Ich hask = 1, the fronts of the three
simulations are indistinguishable and in excellent agreement with the analytical solution. For the retardéd ion Na
which haskR= 2.5, the average location of the breakthrough curve for all grid spacings is correct and is in agreement
with the analytical solution. However, the simulations with coarser grids show a more spread-out breakthrough that
is due to numerical dispersion. The finest grid gives the closest agreement with the analytical solution, but requires
the most computer time.

Computer time is primarily dependent on the number of calls to the geochemical subrouwthrEEalc
and in the absence of kinetic reactions, the number of calls is proportional to (number af(nelsper of
advection steps) (1 + number of dispersion steps). In this example,= D +a, v = @ 45nt/yr. Thus,
by equation 110mixf=1/3, 1, and 3, respectively for the progressively smaller cell sizes. For the 15-meter cell-size
(mixf = 1/3), one dispersion step is taken for each advection step; for the 5-meter calbdizel], three
dispersion steps are taken for each advection step; and for the 1.67-meter calisize3)), nine dispersion steps
are taken for each advection step. Figure 2 shows profiles the advective fron€&&J3 0.5) after 4 years of
travel, when it has arrived at 60 m; for the 15-meter cell size, this requires 4 advection steps. The flowtube consists
of 9 cells for which geochemical calculations are done for each step; therefore, the number of the reaction
calculations is % 4x (1 + 1) = 72. Larger numbers of cells and advection steps apply for the smaller grids. The
number of calls to the reaction calculations for the other two caseski42% (1 + 3) = 1,296; and 8% 36x (1 +
9) = 29,160.

The examples given here have linear retardation to enable comparison with analytical solutions. However,
linear retardation is subject to large numerical dispersion, and the examples are, in a sense, worst cases with respe
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Figure 2.-- Analytical solution for 1D transport with ion-exchange reactions and flux boundary
condition compared with PHREEQC calculations at various grid spacings.

to numerical dispersion. In many cases of geochemical interest, the chemical reactions help to counteract numerical
dispersion because the reactions tend to sharpen fronts, for example with precipitation/dissolution reactions and
displacement chromatography. In other cases, exchange with a less favored ion may give a real, chemical dispersion
that exceeds the effects of numerical dispersion.

Another boundary condition is the Dirichlet, or first-type, boundary condition, which involves a constant
concentratiorC(0t) atx = 0:

C(0,t) = C,. (114)
This boundary condition is valid for water infiltrating from a large reservoir in full contact with the underlying soil,

for example infiltration from a pond, or diffusion of seawater into underlying sediment. The solution for the ARD
equation is in this case (Lapidus and Amundson, 1952):

1
C(xt) =C+ Q(Co—ci) B, (115)
where,
Oyx— 0 O 0
B = erchMD+ expDL%srchMD. (116)
4o VU/RO RO 4o vt/ RO
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Figure 3 shows the results of three simulations with the same discretizations as the previous transport
example. Again, the conservative solute (@th R=1) is modeled accurately for all three grid sizes. The retarded
chemical (N&, R = 2.5) shows numerical dispersion for the coarser grids, but again, the average front locations
agree. With the constant concentration-boundary condition, the number of dispersion time steps is twice the
number for the flux case because of the specified condition @t Also the effect of the first-type boundary
condition is to increase diffusion over the contact surface of the column with the outer solution. The flux of
chemical over the boundary is correspondingly larger and the fronts have progressed a few meters further than ir
figure 2. More comparisons of analytical solutions are given in the discussion of example 11 (breakthrough at the
outlet of a column) and example 12 (diffusion from a constant source).

1.0 e ‘
U@X \ \
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Figure 3.-- Analytical solution for 1D transport with ion-exchange reactions and constant boundary
condition compared with PHREEQC calculations at various grid spacings.

Transport of Heat

Conservation of heat yields the transport equation for heat, or rather, for the change of temperature. The
equation is identical to the advection-reaction-dispersion equation for a chemical substance:

2
oT oT _ oT 0T
(0 Puk)gy + (1-8) Py = =(0 puky) Vs +K (117)
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whereT is the temperature ("CB s the porosity (a fraction of total volume, unitlgss), s the density’\kg/m

is the specific heat (kJ°tkg™), k is a term which entails both the dispersion by advective flow and the heat con-
ductivity of the aquifer (kJ°ém'1s'1), and subscripte ands indicate water and solid, respectively. The tempera-
tureT is assumed to be uniform over the volume of water and solid.

Dividing equation 117 b¥p, k, gives:

2
oT _ oT oT
R—I-a __Vﬁ-l-KL?’ (118)
(1-0) pks

whereR; = 1+ is the temperature retardation factor (unitless)kand is the thermal

K
0 Pukw 0 P, Ky
dispersion coefficient. The thermal dispersion coefficient contains a component for pure diffusion, and a compo-
nent for dispersion due to advectioq): = K+ B, v, similar to the hydrodynamic dispersion coefficient. The
analogy permits the use of the same numerical scheme for both mass and heat transport.

De Marsily (1986) suggests that the thermal dispersi@jty and the hydrodynamic dispensivity may be
equal, whereas the thermal diffusion coefficiegt is orders of magnitude larg&thEmus, dispersion due to
advection can be calculated in the same algorithm for both mass and heat, while thermal diffusion may require an
additional calculation when it exceeds hydrodynamic diffusion. When temperatures are different in the column, and
when the thermal diffusion coefficient is larger than the hydrodynamic diffusion coeffisiemgQcfirst
calculates, for one time step, the temperature distribution and the chemical reactions due to thermal diffusion in
excess of the hydrodynamic diffusion. SubsequertigeeQcCcalculates transport for the combination of heat and
mass due to hydrodynamic diffusion for the time step. The temperature retardation factor and the thermal diffusion
coefficient must be defined in the input file (identifiteermal_diffusion in keywordTRANSPORT). Both
parameters may vary in time, but are uniform (and temperature independent) over the flow domain.

The similarity between thermal and hydrodynamic transport is an approximation which mainly falls short
because diffusion of mass is by orders of magnitude larger in water than in minerals, whereas diffusion of heat is
comparable in the two media although often anisotropic in minerals. The (small) difference in thermal diffusivity
leads to complicated heat transfer at phase boundaries which is not accounteBHaeBQC Also, PHREEQCdoes
not consider the convection that may develop in response to temperature gradients.

Transport in Dual Porosity Media

Water in structured soils and in solid rock has often a dual character with regard to flow: part of the water is
mobile and flows along the conduits (continuous joints, fractures, connected porosity), while another part remains
immobile or stagnant within the structural units. Exchange of water and solutes between the two parts may occur
through diffusion. Dual porosity media can be simulategHREEQCeither with the first-order exchange
approximation or with finite differences for diffusion in the stagnant zone.

First-Order Exchange Approximation

Diffusive exchange between mobile and immobile water can be formulated in terms of a mixing process
between mobile and stagnant cells. In the following derivation, one stagnant cell is associated with one mobile cell.
The first-order rate expression for diffusive exchange is
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dM, dc,,
—5 = BimRim—gp = @(Cm=Cim). (119)

where subscripin indicates mobile anin indicates immobilelM,,, are moles of chemical in the immobile zone,

0, is porosity of the stagnant (immobile) zone (a fraction of total volume, unitlBgsis retardation in the stag-

nant zone (unitlessy;,, is the concentration in stagnant water (mol/kgiig, time (s),C,, is the concentration in
mobile water (mol/kgw), and is the exchange fact'd1).(3'he retardation is equal B= 1 +dg/dC, which is
calculated implicitly bypHREEQCthrough the geochemical reactions. The retardation contains the atgnge
concentration of the chemical in the solid dualtahemical processes including exchange, surface complex-
ation, kinetic and mineral reactions; it may be non-linear with solute concentration and it may vary over time for
the same concentration.

im

The equation can be integrated with the following initial conditions:

Cm = Cimo andC,, = Cmo , at = 0, and by using the mole-balance condition:

_ Rimeim

Cm = Cmo_(Cim_Cimo) R_ 0
m~m
The integrated form of equation 119 is then:
Cim = Bme0+(1—Bf)Cimo, (120)
wheref3 = Rm—em f = 1—exp _at_ O 8., is the water filled porosity of the mobile part (a
"RO +R B P gg_Rr_07m porosity p
m IM~im im"im

fraction of total volume, unitless), afl, is the retardation in the mobile area.

A mixing factor,mixf,, can be defined that is a constant for a given time
mixf, = Bf. (121)
Whenmixf,, is entered in equation 120, the first-order exchange is shown to be a simple mixing process in which
fractions of two solutions mix:

Cim = mixfimCmO+(1—mixfim)Cim0. (122)

Similarly, an equivalent mixing factamixf,,, for the mobile zone concentrations is obtained with the mole-bal-
ance equation:

R 6.

Mixfy, = mixfi, =oat (123)
m~m

and the concentration &f, at timet is

Ch = (1—mixfm)Cmo+ mixfmCimo. (124)

The exchange factax  can be related to specific geometries of the stagnant zone (Van Genuchten, 1985). For
example, when the geometry is spherical, the relation is
D_6
a=—2=™m (125)
2
(afg_q)
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whereD, is the diffusion coefficient in the sphere #s), a is the radius of the sphere (m), afad, is a shape factor
for sphere-to-first-order-model conversion (unitless). Other geometries can likewise be transformed to a value for
a using other shape factors (Van Genuchten, 1985). These shape factors are given in table 1.

An analytical solution is known for a pulse input in a medium with first-order mass transfer between mobile
and stagnant water (Van Genuchten, 1985; Toride and others, 1993); example 13 defines a simulation that can be
compared with the analytical solution. A 2 m column is discretized in 20 cells of 0.1 m. The resident solution is 1
mM KNGOz in both the mobile and the stagnant zone. An exchange complex of 1 mM is defined, and exchange
coefficients are adapted to give linear retardaen2 for N&. A pulse that lasts for 5 shifts of 1 mM NacCl is
followed by 10 shifts of 1 mM KN@ The CI R = 1) and NaR = 2) profiles are calculated as a function of depth.

The transport variables aég, = 068, =@}~ 0.1/3600 = 2.778e-5 m/s; aogd =0.015m. The
stagnant zone consists of spheres with radius a = 0.01 m, diffusion coeffigier.e-10 ni/s, and a shape factor
f,.1=0.21. This gives an exchange factqr = 6.86l6la thePHREEQGINpUt file o | 0,,,ands,,, mustbe given;
Ry andRy, are calculated implicitly bpHREEQCthrough the geochemical reactions.

Figure 4 shows the comparisonFefREEQCwWith the analytical solution (obtained witixTFIT, version 2,
Toride and others, 1995). The agreement is excellent faiRGt 1), but the simulation shows numerical dispersion
for Na" (R = 2). When the grid is made finer so that is equal to or smalleathan (0.015 m), numerical
dispersion is much reduced. In the figure, the effect of a stagnant zone is to make the shape of the pulse
asymmetrical. The leading edge is steeper than the trailing edge, where a slow release of chemical from the stagnant
zone maintains higher concentrations for a longer period of time.

Finite Differences for the Stagnant Zone

As an alternative to first-order exchange of stagnant and mobile zones, a finite difference grid can be laid over
the stagnant region. Fick’s diffusion equatiofks= —D0IC %%l:d = —[F , transform to finite differences for
an arbitrarily shaped cgll

n

ci? = cll+paty %(ciﬂ—cgl)fbc, (126)

iz) 1)
WhereCtj1 is the concentration in cghit the current timeCE2 is the concentration in gelfter the time step)t
is the time step [s, equal té\¢  )n PHREEQQ, i is an adjacent celky; is shared surface area of cetind] (m2), hj
is the distance between midpoints of celésdj (m), V; is the volume of celj (m3), andfyis a factor for boundary
cells (-). The summation is for all cells (uprtpadjacent tg. WhenA;; andhy; are equal for all cells, a central dif-
ference algorithm is obtained that has second-order accumn)/z[. It is therefore advantageous to make the grid

regular.

The correction factdi,, depends on the ratio of the volume of the mobile 2dpgeto the volume of the
boundary cell which contacts the mobile zowg, When the two volumes are equgl, = 1. It can be shown that
fuc. - 2 Whenv,, » o (or if the concentration is constant in the mobile region, Appelo and Postma, 1993, p. 376).
Likewise,f,. = 0 whenV,, = 0. To a good approximation therefore,

\Y,

m

f. =2—m——. (227)
be Vm+Vbc
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Figure 4.-- Analytical solution for transport with stagnant zones, a pulse input, and ion-exchange
reactions compared with PHREEQC calculations at various grid spacings.

Equation 126 can be restated in terms of mixing factors for combinations of adjacent cells. For an adjacent
cell, the mixing factor contains the terms which multiply the concentration differ€pe€),

mixf; = %@ijjfbc (128)
and for the central cell, the mixing factor is
mixf;; = 1—DeAt§j T]iijji,bjc, (129)
which give in equation 126:

n
ci? = mixfy €'+ 3 mixf; Ci*. (130)

P # |
It is necessary that Omixf< 1 to prevent numerical oscillations. If amixfis outside the range, the grid of
mobile and stagnant cells must be adapted. Generally, this requires a reduéition of , which can be achieved b
increasing the number of mobile cells. An example calculation is given in example 13, where the stagnant zone
consists of spheres.
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Table 1.-- Shape factors for diffusive first-order exchange between cells with mobile and immobile water

Shape of Dimensions First-order
stagnant region x,y,2) 0or (2r, 2) equivalent fsﬂl Comments
Sphere a 0.210 2 = diameter
Plane sheet 2a, 0, 0.533 2 = thickness
Rectangular prism 2a, 2a, ® 0.312 rectangle
2a, 23, 16a 0.298
2a, 23, 8a 0.285
2a, 23, 6a 0.277
2a, 23, 4a 0.261
2a, 2a, 3a 0.246
2a, 2a, 2a 0.220 cube ax2ax2a
2a, 2a, 4a/3 0.187
2a, 23, a 0.162
2a, 2a, 2a/3 0.126
2a, 2a, 2al4 0.103
2a, 2a, 2a/6 0.0748
2a, 2a, 2a/8 0.0586
Solid cylinder 2a, © 0.302 2 = diameter
2a, 16a 0.289
23, 8a 0.277
23, 6a 0.270
2a, 4a 0.255
2a, 3a 0.241
2a, 2a 0.216
2a, 4a/3 0.185
23, a 0.161
2a, 2a/3 0.126
2a, 2al4 0.103
2a, 2a/6 0.0747
2a, 2a/8 0.0585
Pipe wall 2r;, 2rg, 2r; = pore diameter
(surrounds the & 4a 0.657 2, = outer diameter
mobile pore) a 10 0.838 of pipe (Enter wall
thickness, - rj=ain
2a, 20a 0.976 Equation 125).
2a, 40a 1.11
2a, 10 1.28
2a, 20(a 1.40
2a, 400 151
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For data input t®’HREEQG 1D transport including only advection is accomplished withARB/ECTION
data block. All other 1D transport calculations, including diffusion, advection and dispersion, and advection and
dispersion in a dual porosity medium, require TRANSPORT data block. Initial conditions of the transport
column are defined witBOLUTION (or SOLUTION_SPREAD), EQUILIBRIUM_PHASES , EXCHANGE,
GAS PHASE SOLID_SOLUTIONS, andSURFACE data blocks. Kinetic reactions are defined with
KINETICS data blocks. Infilling solutions are defined w8®@LUTION (or SOLUTION_SPREAD) data
blocks (see “Description of Data Input”).

EQUATIONS AND NUMERICAL METHOD FOR INVERSE MODELING

PHREEQChas capabilities for geochemical inverse modeling, which attempts to account for the chemical
changes that occur as a water evolves along a flow path (Plummer and Back, 1980; Parkhurst and others, 1982
Plummer and others, 1991, Plummer and others, 1994). In inverse modeling, one aqueous solution is assumed
mix with other aqueous solutions and to react with minerals and gases to produce the observed composition of
second aqueous solution. Inverse modeling calculates mixing fractions for the agueous solutions and mole transfel
of the gases and minerals that produce the composition of the second aqueous solution. The basic approach in
inverse modeling is to solve a set of linear equalities that account for the changes in the moles of each element b
the dissolution or precipitation of minerals (Garrels and Mackenzie, 1967, Parkhurst and others, 1982). Previou:
approaches have also included equations to account for mixing, conservation of electrons, which forces oxidative
reactions to balance reductive reactions, and isotope mole balance (Plummer and Back, 1980; Parkhurst and othel
1982; Plummer and others, 1983; Plummer, 1984; Plummer and others, 1990; Plummer and others, 1991; and
Plummer and others, 1994).

Equations and Inequality Constraints

PHREEQCexpands on previous approaches by the inclusion of a more complete set of mole-balance equations
and the addition of inequality constraints that allow for uncertainties in the analytical data. Mole-balance equations
are included for (1) each element or, for a redox-active element, each valence state of the element, (2) alkalinity
(3) electrons, which allows redox processes to be modeled, (4) water, which allows for evaporation and dilution
and accounts for water gained or lost from minerals, and (5) each isotope (Parkhurst, 1997). Also included are (6)
a charge-balance equation for each aqueous solution, and (7) an equation that relates uncertainty terms for pH,
alkalinity, and total dissolved inorganic carbon for each solution. Furthermore, inequalities are used (8) to constrain
the size of the uncertainty terms within specified limits, and (9) to constrain the sign of the mole transfer of
reactants.

The unknowns for this set of equations and inequalities are (1) the mixing fraction of each agueous solution
Oy (2) the mole transfers of minerals and gases into or out of the aqueous snbution , (3) the aqueous mole
transfers between valence states of each redox element  (the number of redox reactions for each redox eleme
is the number of valence states minus one), and (4) a set of uncertainty terms that account for uncertainties in th
analytical dataBm’ q - Unlike previous approaches to inverse modeling, uncertainties are assumed to be present il
the analytical data, as evidenced by the charge imbalances found in all water analyses. Thus, the uncertainty tern
5m’ q represent uncertainties due to analytical error and spatial or temporal variability in concentration of each
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element, element valence state, or alkalimityin each aqueous solutignThe uncertainty terms can be constrained
to be less than specified uncertainty limits, q which allows user-supplied estimates of uncertainty for each
element or element valence state to limit the deviation from the analyticaﬂ'ql@t& ( ) of revised element
concentrations'[(m, qt 6m, q ) that are calculated in mole-balance models.

Mole-Balance Equations

The mole-balance equations, including the uncertainty terms and redox reactions, for elements and valence
states are defined as

Q P R
chaq(Tm, qtOm g+ ZCm, pap+2cm, o, =0, (131)
q p r
whereQ indicates the number of aqueous solutions that are included in the calcarq{i%n, is the total moles of

element or element valence statén agueous solutioq, 6m’ q can be positive or negativem, D is the coefficient
of master speciawn in the dissolution reaction for phaséby convention, all chemical reactions for phases are
written as dissolution reactions; precipitation in mole-balance models is indicated by negative mole transfers,
ap< 0), P is the total number of reactive phase;ﬁ, ; is the stoichiometric coefficient of secondary master spe-
ciesmin redox reactiom, andR s the total number of aqueous redox reactions. The last aqueous solution, number
Q, is assumed to be formed from mixing the sl aqueous solutions, o, = 1 fo<Q ang =-1

For PHREEQG redox reactions are taken from the reactions for secondary master species defined in
SOLUTION_SPECIES input data blocks. Dissolution reactions for the phases are derived from chemical reactions

defined inPHASES andEXCHANGE_SPECIES input data blocks (see “Description of Data Input”).

Alkalinity-Balance Equation

The form of the mole-balance equation for alkalinity is identical to the form for other mole-balance equations:

Q P R
> ca%(Taik, g+ Baik @ + D Caik pop > Caik (% = 0, (132)
q p r

whereAlk refers to alkalinity. The difference between alkalinity and other mole-balance equations is contained in
the meaning OtAIk, . andAIk, b - What is the contribution to the alkalinity of an aqueous solution due to aqueous
redox reactions or the dissolution or precipitation of phases? The alkalinity contribution of a reaction is defined by
the sum of the alkalinities of the aqueous species in a redox or phase-dissolution rmretizHchefinescAlk, ;

and Calk, p @S follows:

Nag

Catkr = D Paik,iCi,r s (133)
i

and
Nag

Catk p = 2 Paik G, p- (134)
i
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whereb,,, i isthe number of equivalents of alkalinity per mole of spécigs, is the stoichiometric coefficient
of the speciesin the aqueous redox reactigrandc; D is the stoichiometric coefficient of the specieshe
dissolution reaction for phage

Electron-Balance Equation

The mole-balance equation for electrons assumes that no free electrons are present in any of the aqueou:
solutions. Electrons may enter or leave the system through the aqueous redox reactions or through the phase
dissolution reactions. However, the electron-balance equation requires that any electrons entering the system
through one reaction be removed from the system by another reaction:

R P
Zce_'rar+2ce_’ o0 = 0, (135)
r p
Wherec is the number of electrons released or consumed in aqueous redox nezan:td:m 0 is the number
of electrons released or consumed in the dissolution reaction forphase

Water-Balance Equation

The mole-balance equation for water is

R P
Wag q
EGFWH Oca +ZcHOrar+cho o%p = 0, (136)
p
whereGFW is the gram formula weight for water (approximately 0.018 kg/ . is the mass of
H,0 q

water in aqueous solutiam CH,0, r is the stoichiometric coefficient of water in aqueous redox reartbn
CH,0, p is the stoichiometric coefficient of water in the dissolution reaction for ghase

Charge-Balance Equation

The charge-balance equations for the aqueous solutions constrain the urikknown s to be such that, when th
0’s are added to the original data, charge balance is produced in each agueous solution. The charge-balance
equation for an aqueous solution is

ZZm mq= Tz q (137)

WhereTZ’ q is the charge imbalance in agueous solgtimaiculated by a speciation calculation a?qp is

defined to be the charge on the master species plus the alkalinity assigned to the master species,

Em =z,+ bAlk’ m- For alkalinity, EAlk is defined to be -1.0. The summation ranges over all elements or element
valence states and includes a term for alkalinity, just as charge balance is commonly calculated by summing ove
cationic and anionic elements plus a contribution from alkalinity. In the definitian of , the alkalinity of the
master species is added to the charge for that master species to remove the equivalents for the element or eleme
redox state that are already accounted for in the alkalinity. For example, the contribution of carbonate species ir
equation 137 is zero with this definitioniht] zc(oz_ =-20D =2 z=0 );allof the charge contribu-

Alk, CC}
tion of carbonate species is included in the alka1inity term of the summation.
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Isotope-Balance Equations

Geochemical mole-balance models must account for the isotopic composition as well as the chemical
composition of the final aqueous solution. In general, isotopic evolution requires solving a differential equation that
accounts for fractionation processes for precipitating solids and exsolving gases. In the development presented here,
only the simpler case of isotopic mole balance, without fractionation, is considered. This approach is correct if
agueous mixing occurs and (or) all isotope-bearing phases dissolve, but is approximate when isotope-bearing phases
precipitate or exsolve. The approach does not calculate isotopic compositions of individual redox states within the
aqueous phase, only net changes in isotopic composition of the aqueous phase are considered.

Mole balance for an isotope can be written as

QG Me o P .
0= Z%qu‘qz R q+6RLIHTm+6m, PI* Zce, oRe p* O Eﬂp, (138)

whereM,, is the number of valence states of eIenaerFim q is the isotopic ratio [which may be delta notation
(for example5 3¢ onts ), e activity in percent modern carbon, or any units that allow linear mixing] for
isotopei forvalence state  in agueous solutvprﬁ i is an uncertainty term for the isotopic ratio for a valence
state in the aqueous SOIutICRe D is the isotopic ra'ho of element in phase o ,,and is an uncertainty term
for the isotopic ratio of the element in the phase. P

Expanding equation 138 and neglecting the products of 's gives the following approximation:

P
0 | 0
0= Z ZB:QR T+ Cqu ©qOm q+CquGq5R + z%e, oRe, pdp * Ce, papéR‘e I (139)
p
Commonly,6 will be small relative to the concentration of the valence stade;or for the isotopic ratio will

mq
be small relative to the isotopic ratio itself. In either case, the produdts of s that are neglected will be small rela-

tive to the other terms and equation 139 will be a good approximation. The approximation in equation 139 will be
poor only if the concentration of the valence state and the isotopic ratio have large cafculated 's. In this case, the
overall effect is that the true values of the uncertainty terms will be larger than specified uncertainty limits. The
neglected terms can be made smaller by decreasing the uncertainty limits on either the valence-state concentrations
or the isotopic ratios for each aqueous solution.

Relation Among pH, Alkalinity, and Total Dissolved Inorganic Carbon Uncertainty Terms

One additional equation is added for each aqueous solution to relate the uncertainty terms in pH, alkalinity,
and total dissolved inorganic carbon. Unlike all other mole-balance quantities, which are assumed to vary
independently, alkalinity, pH, and inorganic carbon are not independent. The following equation is used to relate the
uncertainty terms for each of these quantities:

6Alk 6Alk

6Alk,q aC 6Cq apH 6pH,q’ (140)

whereAqu is the alkalinity of solutio, andCq is the total inorganic carbon of soluttpThe partial deriva-
tives are evaluated numerically for each aqueous solution.
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Inequality Constraints

This formulation of the inverse problem makes sense only if the values ®f the ’s are small, meaning that
the revised aqueous solution compositions (original plus 's) do not deviate unreasonably from the original data.
A set of inequalities places limits on the magnitudes ofdhe ’s. The absolute value abeach is constrained to be
less than or equal to a specified uncertainty Iiuhi{,q

B d < Um o (141)
Inequality constraints (equation 141) are also included for carbon(+4), alkalinity, and pH for each aqueous solu-
tion. In addition, the mixing fractions for the initial aqueous solutians Q ) are constrained to be nonnegative,
g2 0, (142)

and the final aqueous-solution mixing fraction is fixed to -1}%(: -1.0 ). If phases are known only to dissolve,
or only to precipitate, the mole transfer of the phases may be constrained to be nonnegative or nonpositive:

a,20, (143)
or
a D <0. (144)

Change of Variables

The system of equations for inverse modeling, formulated in the previous section, is nonlinear because it

includes the product of unknowns of the foual(Tm q+ Om q) ,where d&nd are unknowns. However, the
equations can be linearized with the substitution
€m q = Y¢m g (145)
The mole-balance equations now become
Q Q P R
ZCqu’ gt Zcqsm,q+ Zcm, IE,0(p+Zcm, o, = 0. (146)
q q p r
The alkalinity balance equation can be written as
Q Q P R
ZchAlk’ gt Z Cofalk q " ZCA”(' 0%t ZCA”(’ [a, = 0. (147)
q q p r
The electron-balance equation is unchanged. The charge-balance equation can be rewritten into
M
szsm, qt9qT, 4= 0 (148)
m
The water-balance equation is unchanged. The isotope-balance equation 139 is
Q M. _ _ P _
~ | ' 0 ! O
0= S HqRm oTmlq* GRm ¢fm, q* CaTmf [* D Ko Re o9+ Ce, Fr [ (149)
a m p

The relation among carbon(+4), pH, and alkalinity is
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aAIk aAIk

8AIk,q va 8Cq apH pH,q; (150)

and lastly, the inequality constraints become
|sm, 4 <ogUn " (151)

All of these equality and inequality equations are linear in the unknawns eand , and once the values of all of the
o ande are known, the values of the uncertainty t&dms  can be determined.

This formulation of the inverse-modeling problem produces a series of linear equality and inequality
constraints, which are solved with the algorithm developed by Barrodale and Roberts (1980). Their algorithm
performs an L1 optimization (minimize sum of absolute values) on a set of linear equations subject to equality and
inequality constraints. The problem can be posed with the following matrix equations:

AX = B
CX =D (152)
EX<F .

The first matrix equation is minimized in the sense Fﬁ# Zal i% iS @ minimum, wisettee index of

rows and is the index for columns, subject to the equality constralnts of the second matrix equation and the ine-
quality constraints of the third matrix equation. The method will find a solution that minimizes the objective func-
tions (AX = B) or it will determine that no feasible model for the problem exists.

€
Initially, AX = Bissetto minimizez z M , wher& = 0.001 is a scaling factor that limits the size

m,

of the coefficients in th& matrix; Ais a diaqgo;lnal mat?ix with elemen§s ,aBd= 0 . The equality constraints
(CX = D) include all mole-balance, alkalinity-balance, charge-bal%mce, electron-balance, and water-balance
equations and all inorganic carbon-alkalinity-pH relations. The inequality constia)ts F ) include two ine-
gualities for each of the s, one for positive and one for negative (to account for the absolute values used in the
formulation), an inequality relation for each mixing fraction for the aqueous solutions, which forces each mixing
fraction to be nonnegative, and an inequality relation for each phase that is specified to dissolve only or precipitate
only. Application of the optimization technique will determine whether any inverse models exist that are consistent
with the constraints.

Thus, one set of mixing fractions and phase mole transfers (plus asseciated 's) that satisfy the constraints
may be found. Ignoring the values of the 's and redox mole transfers (), let the set of Qpzeraa and
(mixing fractions and phase mole transfers) uniguely identify an inverse model. The magnitude of the ’sis not
important in the identity of an inverse model, only the fact thatithe ’s are nonzero in a certain set is considered.
(At this point, little significance should be placed on the exact mole transfers that are found, only that it is possible
to account for the observations using the aqueous solutions and phases of the inverse model.) But could other sets
of aqueous solutions and phases also produce feasible inverse models? An additional algorithm is used to find all of
the unique inverse models.

AssumingP phases an@ aqueous solutions, we proceed as follows: If no model is found whé€haajueous
solutions andP phases are included in the equations, we are done and no feasible models exist. If a model is found,
then each of the phases in the model is sequentially removed and the remaining set of phases and agueous solutions
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is tested to see if other feasible models exist. If no model is found when a particular phase is removed, the pha:s
is retained in the model; otherwise, the phase is discarded. After each phase has been tested and possibly discard
the phases that remain constitute a “minimal” model, that is, to obtain a feasible model none of the phases can b
removed. Three lists are kept during this process: each feasible model is kept in one list, each infeasible model i
kept in another list, and each minimal model is kept in a third list.

Next, each combination &f-1phases is tested for feasible models in the following way. If a trial model with
Q aqueous solutions aritt1 phases is a subset of a model in the infeasible- or minimal-model list, the trial model
is skipped because it must be either infeasible or a previously identified minimal model. If only minimal models
are to be found-minimal in INVERSE_MODELING data block), the trial model is skipped if it is a superset of
a model in the minimal-model list. Otherwise, the inverse problem is formulated for the trial model and solved
using the set of aqueous solutions and?fiephases in the same way as described above, maintaining the three
lists during the process. Once all set®ef phases have been tested, the process continues with fefyblases,
and so on until the set containing no phases is tested or until, for the given number of phases, every trial model is
either a subset of a model in the infeasible- or minimal-model list.

At this point, the entire process is repeated using each possible combination of one or mofg axdtis®us
solutions. Although the process at first appears extremely computer intensive, most sets of phases are rapidly
eliminated by subset and superset comparisons with models in the three lists. The number of models that are
formulated and solved by the optimization methods are relatively few. Also the process has the useful feature tha
if no feasible models exist, this is determined immediately when the optimization procedure is invoked the first
time. ForPHREEQG during all of the testing, whenever a feasible model is found, it is printed to the output device
or optionally, only the minimal models are printed to the output device.

An alternative formulation of the objective functions can be used to determine the range of mole transfer for
each aqueous solution and each phase that is consistent with the specified uncertainty limits. For the “range”
calculation frangein INVERSE_MODELING data block), the equations for a given model are solved twice for
each aqueous solution and phase in the model, once to determine the maximum value of the mixing fraction or
mole transfer and once to determine the minimum value of the mixing fraction or mole transfer. In these
calculations, thel-J s are not minimized, but instead, the single objective function for maximization is

o =M, (153)
and in the minimization case,
a=-M, (154)

wherea refersto eithenxq a, amd s a large number. By default, the valueMfis 1000. The optimization
method will try to minimize the difference between and 1000 for maximization and between and -1000 for
minimization. It is possible that the mixing fraction for a squticurh( ) could exceed 1000 in an evaporation prob-
lem. In this case, the method would fail to find the true maximunuf&)r , and instead find a value closest to 1000.
This error can be remedied by choosing a larger valuklfor . The vallle of  may be changed-raitiy¢he

identifier in thelNVERSE_MODELING data block.

For data input tHREEQG identifiers in thdNVERSE_MODELING data block are used for the selection
of agueous solutionsgplutions), uncertainty limits {uncertainties and-balance$, reactants-phases,
mole-balance equationsh@lances, range calculationsrange) and minimal models-ihinimal).
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