# estimate A of pyrite to reduce 22 mol/L/yr # volume = 0.1 * 1 = 0.1 m3 # 0.1m3 * 30% of 0.3 = 9 L water # 0.1m3 * 2 ton/m3 * 0.04 / 119.85 / 9 = 7.4 mol pyr/L = m. m * 2 = m0 = 14.8 mol/L # 22 mol O2 * 24/0.2 = 2640 L air # Note the increase in rate when pH < 3 and Fe+3 is important oxidator RATES Pyrite # rates from data compiled by Williamson and Rimstidt 1994, GCA 58, 5443 -start 1 A = 0.0073 * m0 # initial surface area in m2 indicates 2 cm size crystals 10 if SI("Pyrite")>0 then goto 100 20 fH = mol("H+") 30 fFe2 = (1 + tot("Fe(2)")/1e-6) 40 if mol("O2") < 1e-6 then goto 80 # rate with oxygen... 50 rO2 = 10^-8.19 * mol("O2")^0.5 * fH^-0.11 # rate with oxygen and Fe3+... 60 rO2_Fe3 = 6.3e-4 * tot("Fe(3)")^0.92 * fFe2^-0.43 70 goto 90 80 rem # rate with Fe3+ without oxygen, and for pH < 3 81 rFe3 = 1.9e-6 * tot("Fe(3)")^0.28 * fFe2^-0.52 * fH^-0.3 90 rate = A * (m/m0)^0.67 * (rO2 + rO2_Fe3 + rFe3) * (1 - SR("Pyrite")) 100 save rate * time -end SOLUTION_SPECIES # make N2 the only N species... 2NO3- + 12H+ + 10e- = N2 + 6H2O; log_k 500 #207.080 SOLUTION 1 pH 7 charge; pe 14 O2(g) -1.0878 Ca 1 Calcite; C(4) 1 CO2(g) -2.6021 Fe 1e-3 Goethite 2; N 1.3 N2(g) -0.0382 PHASES JarositeH 337 (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O log_k -5.390 delta_h -55.150 kcal EQUILIBRIUM_PHASES 1 Goethite 2 100; JarositeH 0 0 GAS_PHASE 1 -fixed_pressure # default 1 atm -volume 2640 O2(g) 0.2; N2(g) 0.8 KINETICS 1 Pyrite; -m0 14.8; -m 7.4; -step 3.05e7 0.1e7 INCREMENTAL_REACTIONS true END