# Find d13C. Open system dissolution of calcite... PRINT; -reset false; -user_print true SOLUTION 1 -temp 10 EQUILIBRIUM_PHASES 1; CO2(g) -1.5 KINETICS 1 Calcite; -m0 1; -parms 200 0.67; -steps 0 100*36 INCREMENTAL_REACTIONS true USER_GRAPH 1 -headings cc open_d13C -initial_solutions false -axis_titles "Dissolved calcite / (mmol/L)" "d13C / (0/00)" -axis_scale y_axis -24 -12 4 # Find d13C in solute species 1= CO2aq, 2= HCO3-, 3=CO3-2 -start # Define enrichments (eps) relative to g= CO2_gas from Clark and Fritz, 1997, p. 121 ... 4 T = TK 10 eps_1_g = 0.19 - 373 / T 20 eps_2_g = -24.1 + 9.552e3 / T 30 eps_3_g = -3.4 + 0.87e6 / T^2 # Find carbonate species... 40 co2 = mol("CO2") 50 hco3 = mol("HCO3-") + mol("CaHCO3+") 60 co3 = mol("CO3-2") + mol("CaCO3") 70 tic = co2 + hco3 + co3 # and d13 of the species... 80 d13g = -23 90 d13tot = (co2 * (eps_1_g + d13g) + hco3 * (eps_2_g + d13g) +\ co3 * (eps_3_g + d13g)) / tic # chart... 100 graph_x tot("Ca")*1e3 110 graph_y d13tot -end END # Find d13C. Closed system dissolution... SOLUTION 2 -temp 10; pH 6 charge; C 1 CO2(g) -1.5 KINETICS 2 Calcite; -m0 1; -parms 200 0.67; -steps 0 30*40 USER_GRAPH 1 -headings cc closed_d13C -initial_solutions true -start 2 if step_no > 0 then goto 100 # Define enrichments (eps) from Clark and Fritz, 1997, p. 121 ... 4 T = TK 10 eps_1_g = 0.19 - 373 / T 20 eps_2_g = -24.1 + 9.552e3 / T 30 eps_3_g = -3.4 + 0.87e6 / T^2 # Find carbonate species... 40 co2 = mol("CO2") 50 hco3 = mol("HCO3-") + mol("CaHCO3+") 60 co3 = mol("CO3-2") + mol("CaCO3") # and d13 of the initial solution... 80 d13g = -23 90 d13ms = co2 * (eps_1_g + d13g) + hco3 * (eps_2_g + d13g) +\ co3 * (eps_3_g + d13g) 92 put(d13ms, 1) 94 graph_x 0 96 graph_y get(1) / tot("C(4)") 98 goto 150 # chart the reaction... 100 graph_x tot("Ca")*1e3 110 graph_y (tot("Ca") * 0 + get(1)) / tot("C(4)") 150 end -end END