p. 492 ... two velocity terms, \ldots for the air boundary layer $v_{a}=\left(D_{a} K_{H}^{\prime}\right) / z_{a}$
p. 492 ANSWER: $E_{\text {theor }}=v_{w}=D_{f} / z_{w}=1577 \mathrm{~m} / \mathrm{yr}$.
p. 156
$-\mathrm{d} m_{\mathrm{Fe}^{2+}} / \mathrm{d} t=8 \times 10^{13} \times 10^{-3} \times\left(10^{-9}\right)^{2} \times 0.2=1.6 \times 10^{-8} \mathrm{~mol} / \mathrm{L} / \mathrm{min}$
p. 157 Thus, $t / 2=\ln (1 / 2) /-1.6 \times 10^{-5}=43321 \mathrm{~min}$ or 722 hr .

QUESTIONS:
ANSWER: 722 hr
ANSWER: 4.3 minutes
p. 290

$$
\begin{equation*}
\mathrm{d} \psi / \mathrm{d} x=\sqrt{\left(8(R T / \varepsilon) m_{i, \infty}\right)} \sinh (+F \psi / 2 R T) \tag{6.57}
\end{equation*}
$$

where $b=+F /(2 R T)$ and \ldots
Figure 8.18 should be, with the time for K-feldspar dissolution increased to 30 years:

Figure 8.18. PHREEQC calculation of K-feldspar dissolution kinetics using Equation (8.26). The conditions are varied as follows: (a) Equilibrium for gibbsite imposed, initial $\mathrm{pH}=4$ and $10^{\circ} \mathrm{C}$. (b) as case (a) but without equilibrium for gibbsite, (c) as case (a) but using a temperature of $25^{\circ} \mathrm{C}$, (d) as case (a) but with an initial pH of 5, (e) as case (a) but with $P_{\mathrm{CO}_{2}}=10^{-2.5}$ atm imposed.

In the $10^{\text {th }}$ printing (in 2013) of Appelo and Postma, 2005, we define the pore water diffusion coefficient D_{p} for calculating diffusion in a porous medium. In previous printings, this was called the effective diffusion coefficient D_{e}. The change in nominology is in line with current terminology.
In short:
D_{f} is the diffusion coefficient in "free" water $\left(\mathrm{m}^{2} / \mathrm{s}\right)$.
The pore water diffusion coefficient is:

$$
\begin{equation*}
D_{p}=\frac{D_{f}}{\theta^{2}} \tag{3.44}
\end{equation*}
$$

where θ is the tortuosity of the porous medium (no dimension).
The effective diffusion coefficient is:

$$
\begin{equation*}
D_{e}=\varepsilon_{w} D_{p}=\frac{\varepsilon_{w} D_{f}}{\theta^{2}} \tag{3.45}
\end{equation*}
$$

D_{p} is for calculating concentration changes in a porous medium (with the same formulas as used for "free" water if the porosity ε_{w} is the same throughout).
D_{e} is for calculating the flux $\left(\mathrm{mol} / \mathrm{m}^{2} / \mathrm{s}\right)$.

Errata in printings before 2013.

p. 264 Percolation gives $0.015 \mathrm{~m} / \mathrm{yr} \times 1 \times 1 \mathrm{~m}^{2}=0.015 \mathrm{~m}^{3} / \mathrm{yr}$.
p. 337 EXAMPLE 7.6. Calculate the surface potential for $2.6 \times 10^{-7} \mathrm{eq} / \mathrm{m}^{2}$
p. 630
9.1. Find $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}=0.42 \times \mathrm{As}(5)=0.49 \mu \mathrm{M}$ with the speciation factor. Using Equation (9.32), pe $=0.041$, $\mathrm{Eh}=0.024 \mathrm{~V}$.
p. 548

$$
\begin{array}{ll}
\ldots & = \\
\ldots & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
=4 & 7 & -2 & 0 \\
0 & -2 & 5 & -2 \\
0 & 0 & -2 & 3
\end{array}\right] \tag{11.22}
\end{array}
$$

Errata in printings before 2008.

p. 64

ANSWER:
Hence $v_{\mathrm{H}_{2} \mathrm{O}}=0.1 / 0.022=$
$4.6 \mathrm{~mm} / \mathrm{yr}$. Age: $3000 \mathrm{~mm} / 4.6 \mathrm{~mm} / \mathrm{yr}=652 \mathrm{yr}$.
p. 82 ANSWER: 5.9 in case dispersion is absent.
p. 222

$$
\begin{equation*}
\delta^{13} \mathrm{C}=\frac{\delta^{13} \mathrm{C}_{i} \times T I C_{i}+\delta^{13} \mathrm{C}_{d o l} \times 2 \times D_{d o l}-\left(\delta^{13} \mathrm{C}+\varepsilon_{c c / s o l}\right) P_{c c}}{T I C_{i}+2 \times D_{d o l}-P_{c c}} \tag{5.52}
\end{equation*}
$$

p. 249
structure of the crystal. The substitution of Si^{4+} by Al^{3+} reduces the positive charge by one in an
p. 269

$$
\frac{\left[\mathrm{Na}^{+}\right]}{\sqrt{\left[\mathrm{Ca}^{2+}\right]}}=K_{\mathrm{CalNa}} \frac{[\mathrm{Na}-\mathrm{X}]}{\sqrt{\left[\mathrm{Ca}-\mathrm{X}_{2}\right]}}
$$

p. 270

Equation (6.33) we can calculate that $f=0.43, c_{\mathrm{Na}^{+}}=0.7 \mathrm{meq} / \mathrm{L}$ and $c_{\mathrm{Ca}^{2+}}+\mathrm{Mg}^{2+}=1.08 \mathrm{meq} / \mathrm{L}$ in the p. 290
where $b=-F /(2 R T)$ and $a=\sqrt{8(R T / \varepsilon) m_{i, \infty}}$.
p. 291

$$
\begin{equation*}
\sigma_{D L}=\sqrt{8 \varepsilon R T m_{i, \infty}} \sinh \left(F \psi_{0} / 2 R T\right) \tag{6.62}
\end{equation*}
$$

p. 369
7.19. Estimate the percentage Ni^{2+} at trace $\left(10^{-8} \mathrm{M}\right)$ concentration sorbed on smectite in $3.3 \mathrm{mM} \mathrm{Ca}^{2+}$ solution, 1 g smectite/L, $C E C=0.87 \mathrm{meq} / \mathrm{g}$. Compare with Figure 7.18, $\mathrm{pH}<5$. Note to include NiX_{2} (cf. Table 6.4).
b. Include 1.86 mg ferrihydrite, vary $\log _{_} \mathrm{k}$ for sorption of Ni^{2+} on the strong sites?
p. 397
weathering rates k_{i} at another temperature $(T, \mathrm{~K})$ than $8^{\circ} \mathrm{C}(281 \mathrm{~K})$:
In Equation (8.27) replace 271 by 281
p. 415

$$
\begin{equation*}
2 \mathrm{Fe}^{2+}+\mathrm{MnO}_{2}+4 \mathrm{H}^{+} \leftrightarrow 2 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \tag{9.1}
\end{equation*}
$$

p. 424

$$
\text { ANSWER: } \mathrm{pe}=-\mathrm{pH}-1 / 2 \log \left[P_{\mathrm{H}_{2}}\right], \mathrm{pe}=-\mathrm{pH}+2.5
$$

p. 425-428

New WATEQ4F database speciates As differently (p. 425-428): download As p425.pdf (32 kB). Or download the PHREEQC input file Table9_3 with the $\log K$ numbers from Table 9.3.
p. 456 download ex9_9
p. 457

ANSWER: $0.0073 \mathrm{~m}^{2} / \mathrm{mol}$ pyrite (valid for 2 cm crystals).
p. 491

$$
\begin{equation*}
c_{w}^{\prime}=\frac{\left(D_{a} / z_{a}\right) c_{a}+\left(D_{f} / z_{w}\right) c_{w}}{K_{H}^{\prime} D_{a} / z_{a}+D_{f} / z_{w}} \tag{10.6}
\end{equation*}
$$

p. 507
where D_{e} is the diffusion coefficient in the stagnant region, a is the size (m), and $f_{s \rightarrow 1}$ is a
and $\rho_{b} / \varepsilon=6 \mathrm{~kg} / \mathrm{L}$. The diffusion coefficient is $D_{e}=0.99 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ in the clay.
[Note: the pore water diffusion coefficient D_{p} is used since the $10^{\text {th }}$ printing]
p. 508
$0.12 /(0.165 \times 0.53)^{2}=1.55 \times 10^{-9} / \mathrm{s}$.
p. 522
is changed to: 20 graph_y $\log ($ tot("Phenol") * 94e3).
p. 542 In Equations (11.3) and (11.4), change $\left(c_{0}+c_{i}\right)$ to $\left(c_{0}-c_{i}\right)$
p. 623
5.2. $\mathrm{pH}=6.81,\left[\mathrm{CO}_{3}^{2-}\right]=10^{-6.38} ; \mathrm{pH}=9.95,\left[\mathrm{CO}_{3}^{2-}\right]=0.4 \mathrm{mM}$ (without the contribution of OH^{-}to Alk), or $\mathrm{pH}=$ $9.86,\left[\mathrm{CO}_{3}^{2-}\right]=0.33 \mathrm{mM}$ (when including the contribution of OH^{-}to Alk).
5.5. $\quad \mathrm{Ca}^{2+}=1.58 \mathrm{mmol} / \mathrm{L}$ (with $K_{\mathrm{cc}}=10^{-8.3}$), $\mathrm{Ca}^{2+}=1.38 \mathrm{mmol} / \mathrm{L}$ (with $K_{\mathrm{cc}}=10^{-8.5}$).
5.6. $\quad P_{\mathrm{CO}_{2}}=0.02 \mathrm{~atm}\left(\right.$ with $\left.K_{\mathrm{cc}}=10^{-8.3}\right), 0.03 \mathrm{~atm}$ (with $K_{\mathrm{cc}}=10^{-8.5}$).
5.7. $P_{\mathrm{CO}_{2}}=10^{-2.55} \mathrm{~atm}\left(\right.$ with $K_{\mathrm{cc}}=10^{-8.3}$), $10^{-2.45} \mathrm{~atm}$ (with $K_{\mathrm{cc}}=10^{-8.5}$).
p. 626
6.7d.
... 26.9 pore volumes $=7935 \mathrm{~m}^{3}$ water.
p. 631
9.3. Note that $\mathrm{Pb}(\mathrm{OH})_{3}$ is dominant for $\mathrm{pH}>9.4$, as will become evident when eqns 3) and 4) are combined.

